通过对非平衡态湍流边界层壁面脉动压力的数值模拟研究,建立有压力梯度下的湍流边界层壁面脉动压力数值模拟方法。通过对不同厚度分布的翼型表面的湍流边界层模拟,获得不同压力梯度模型的壁面脉动压力特征。采用湍流边界层参数对脉动压力频谱进行归一化处理,其频谱特征与试验结果吻合较好。对湍流壁面脉动压力的频率-波数谱进行分析,获得了显著的湍流传输特征。随着不同模型压力梯度的增加,在波数峰脊附近的谱级增加幅值为3 dB。此数值模拟方法可为复杂工况下的湍流边界层壁面脉动压力的数值研究提供技术支撑。
A numerical simulation method of turbulent boundary layer wall pulsation pressure with pressure gradient is established by studying the pressure fluctuation on the wall of non-equilibrium turbulent boundary layer. By simulating the turbulent boundary layer on the airfoil surface with different thickness distributions, the characteristics of wall fluctuating pressure in different pressure gradient models are obtained. The turbulent boundary layer parameters are used to normalize the spectrum of fluctuating pressure, and the spectrum characteristics are in good agreement with the experimental results. The frequency-wave number spectrum of fluctuating pressure on a turbulent wall is analyzed, and the significant characteristics of turbulent transmission are obtained. With the increase of pressure gradient in different models, the spectral level near the crest of wave number peak increases by 3 dB. The numerical simulation method in this paper can provide a technical support for the numerical study of the fluctuating pressure on the turbulent boundary layer wall under complex working conditions.
2022,44(11): 40-43 收稿日期:2021-09-16
DOI:10.3404/j.issn.1672-7649.2022.11.008
分类号:U661.31
基金项目:国家自然科学基金资助项目(51706211):国家自然科学基金资助项目(51706211)
作者简介:舒礼伟(1978-) ,男,博士,高级工程师,主要从事船舶推进技术研究
参考文献:
[1] HWANG Y. F, WILLIAM K. B, STEPHEN A. H. Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra[J]. Journal of Sound and Vibration, 2008, 319(1): 199-217.
[2] CORCOS G. M, The structure of the turbulent pressure field in boundary-layer flows[J]. Journal of Fluid Mechanics, 1964, 18(3): 353-378.
[3] MARTIN N. C., LEEHEY P. Low wavenumber wall pressure measurements using a rectangular membrane as a spatial filter[J]. Journal of Sound and Vibration, 1977, 52(1): 95–120
[4] CHASE D. M. The wave-vector-frequency spectrum of pressure on a smooth plane in turbulent boundary-layer flow at low mach number[J]. J Acoust. Soc. Am., 1991, 90(2): 1032–1040
[5] Smolyakav A. V, Tkachenko V. M. The measurement of turbulent fluctuation [M]. Translated by Chomet S, Springer-Verlag, 1983: 120-122.
[6] MENG W, STEPHANE M, GIANLUCA I, et al. LES Prediction of Wall-Pressure Fluctuations and Noise of a Low-Speed Airfoil[J]. International Journal of Aeroacoustics, 2009, 8(3): 177–198
[7] 张楠, 张胜利, 沈泓萃, 等. 翼/板结合部涡旋流动结构与壁面脉动压力的大涡模拟研究[J]. 船舶力学, 2013, 17(7): 729–740
ZHANG Nan, ZHANG Sheng-li, SHEN Hong-cui, et al. Large eddy simulation of vortical flow structure and wall pressure fluctuations around wing-plate junction[J]. Journal of Ship Mechanics, 2013, 17(7): 729–740
[8] 张晓龙, 张楠, 吴宝山. 平板壁面湍流脉动压力及其波数——频率谱的大涡模拟计算分析研究[J]. 船舶力学, 2014, 18(10): 1151–1164
ZHANG Xiao-long, ZHANG Nan, WU Bao-shan. Computation of turbulent wall pressure fluctuation and its wavenumber-frequency spectrum using large eddy simulation[J]. Journal of Ship Mechanics, 2014, 18(10): 1151–1164
[9] 邓玉清, 张楠. 孔腔脉动压力及其波数—频率谱的大涡模拟研究[J]. 船舶力学, 2017, 21(10): 1199-1209.
DENG Yü-qing, ZHANG Nan. Computation of wall pressure fluctuations and wavenumber-frequency spectrum of cavity using large eddy simulation. Journal of Ship Mechanics, , 2017, 21(10): 1199-1209.
[10] SMAGORINSKY J. General circulation experiments with the primitive equations: Part I, the basic experiment[J]. Monthly Weather Review, 1963, 91: 99-164.
[11] 庞业珍. 空间声场相关特性测量方法及应用研究[D]. 北京: 中国舰船研究院, 2018.