针对控制增益方向未知和参数不确定的船舶航向系统,提出基于事件触发的船舶航向逻辑切换自适应控制算法。该算法将逻辑切换机制及事件触发机制相结合,决定何时进行控制器参数切换及控制信号更新。其中逻辑切换机制能够有效处理系统中未知的控制增益方向。由于事件触发机制的引入,相比于传统的时间触发控制算法,该算法的控制信号更新频率得到有效降低。此外,引入一种动态增益降低了采样误差对系统性能的影响。理论分析证明了该算法实现了对设定航向的跟踪误差指数收敛到可调的原点邻域内。仿真实验结果表明,该算法具有良好的跟踪效果且有效降低了控制信号更新频率。
In this paper, an event-triggered switch logic adaptive control algorithm is proposed for ship course system with unknow control direction and uncertain parameters. This algorithm determines not only when to switch the design parameter but also when to update the control signal by combining the logic switching mechanism and event-triggering mechanism. The logic switching mechanism can handle the unknow control direction. Due to the introduction of the event-triggering mechanism, the update frequency of the control signal is effectively reduced compared with the traditional time-triggered controller. In addition, a dynamic-gain is introduced to minimize the bad impact of sampling error on the system performance. The theoretical analysis proves that the proposed algorithm achieves the tracking error exponentially converges towards a region of the origin which is adjustable. The simulation experiment results indicate that this proposed algorithm has a good tracking effect and effectively reduces the update frequency of the control signal.
2022,44(11): 76-81 收稿日期:2021-08-19
DOI:10.3404/j.issn.1672-7649.2022.11.016
分类号:TP273
基金项目:广西创新驱动发展专项(桂科AA17202032-2)
作者简介:李国进 (1964-),男,博士,教授,研究方向为控制理论与应用
参考文献:
[1] BANAZADEH A, GHORBANI M T. Frequency domain identification of the Nomoto model to facilitate Kalman filter estimation and PID heading control of a patrol vessel[J]. Ocean Engineering, 2013, 72(1): 344–355
[2] 孙武臣, 卜仁祥, 刘勇. 具有横倾抑制功能的船舶PID微分补偿航向控制[J]. 上海海事大学学报, 2020, 41(3): 19–24
[3] ZHANG X, ZHANG G. Design of ship course-keeping autopilot using a sine function-based nonlinear feedback technique[J]. Journal of Navigation, 2016, 69(2): 246–256
[4] LIU Z. Ship adaptive course keeping control with nonlinear disturbance observer[J]. IEEE Access, 2017(5): 17567–17575
[5] ZHANG Q, ZHANG X. Nonlinear improved concise backstepping control of course keeping for ships[J]. IEEE Access, 2019(7): 19258–19265
[6] 王永涛. 基于粒子群优化反步法的船舶航向控制器设计[J]. 中国航海, 2020, 43(1): 78–82
[7] NUSSBAUM R D. Some remarks on a conjecture in parameter adaptive control[J]. Systems & Control Letters, 1983, 3(5): 243–246
[8] 袁雷, 吴汉松. 船舶航向控制的多滑模鲁棒自适应设计[J]. 控制理论与应用, 2010, 27(12): 1618−1622.
[9] 沈智鹏, 邹天宇. 控制方向未知的无人帆船自适应动态面航向控制[J]. 哈尔滨工程大学学报, 2019, 40(1): 94−101.
[10] YE X. Global adaptive control of nonlinearly parametrized systems[J]. IEEE Transactions on Automatic Control, 2003, 48(1): 169–173
[11] WU J, CHEN W, LI J. Global finite-time adaptive stabilization for nonlinear systems with multiple unknown control directions[J]. Automatica, 2016, 69: 298–307
[12] GUO T, LIU Y, MAN Y. Adaptive controller of nonlinear systems with unknown control directions and unknown input powers[J]. International Journal of Robust and Nonlinear Control, 2020, 30: 7670–7689
[13] SUN X, CHEN W. Global generalized exponential/finite-time control for course-keeping of ships[J]. International Journal of Control, 2016, 89(6): 1169–1179
[14] CHEN W, WEN C, WU J. Global exponential/finite-time stability of nonlinear adaptive switching systems with applications in controlling systems with unknown control direction[J]. IEEE Transactions on Automatic Control, 2018, 63(8): 2738–2744
[15] TZENG C Y, GOODWIN G C, CRISAFULLI S. Feedback linearization design of a ship steering autopilot with saturating and slew rate limiting actuator[J]. International Journal of Adaptive Control and Signal Processing, 1999, 13: 23–30