固体氧化物燃料电池与微型燃气轮机(SOFC-MGT)联合发电系统可以有效提高船舶的续航力以及能源的利用率,为了分析该系统在不同循环方式下的性能优劣,运用Matlab/Simulink软件分析了不同燃料流量对新型SOFC-MGT底层循环系统功率、效率等性能的影响,并将新型SOFC-MGT底层循环系统输出功率等性能与传统的SOFC-MGT底层循环系统以及顶层循环系统进行了对比分析。研究结果表明,3种循环方式下,系统的输出最大功率分别为1.33kW,1.29kW和1.48kW,输出效率分别为50.6%,56.3%和65.6%。在输出功率方面,SOFC-MGT顶层循环系统的输出性能要优于2种底层循环,新型SOFC-MGT底层循环系统的输出性能要优于传统的底层循环,在涡轮尾气能量回收方面,新型SOFC-MGT底层循环系统要优于顶层循环和传统的底层循环系统。
The solid oxide fuel cell and micro gas turbine (SOFC-MGT) combined power generation system can effectively improve the endurance and energy efficiency of ships. In order to analyze the performance of the system under different cycle modes, use Matlab /Simulink software analyzes the effects of different fuel flow rates on the power and efficiency of the new SOFC-MGT bottom cycle system, and compares the output power of the new SOFC-MGT bottom cycle system with the traditional SOFC-MGT bottom cycle system and top cycle system A comparative analysis was carried out. The research results showed that the maximum output power of the system was 1.33kW, 1.29kW and 1.48kW, and the output efficiency was 50.6%, 56.3%, and 65.6%, respectively, under the three circulation modes. In terms of output power, the output performance of the SOFC-MGT top cycle system is better than that of the two bottom cycles, and the output performance of the new SOFC-MGT bottom cycle system is better than that of the traditional bottom cycle. In terms of turbine exhaust energy recovery.The new SOFC-MGT bottom circulation system is superior to the top circulation and the traditional bottom circulation system.
2022,44(11): 119-124 收稿日期:2021-05-13
DOI:10.3404/j.issn.1672-7649.2022.11.025
分类号:TM911;TK472
基金项目:国家部委基金资助项目(18-16-13-ZT-001-001-04;17-H863-05-ZT-002-041-01)
作者简介:乔润鹏(1993-),男,硕士研究生,研究方向为动力机械及热力系统的设计、仿真与优化
参考文献:
[1] 代安娜, 许林峰, 税安泽. 固体氧化物燃料电池的研究与进展[J]. 硅酸盐通报, 2015, 34(S1): 234–238
[2] COSTAMAGNA P, MAGISTRI L, MASSARDO A F. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine[J]. Journal of Power Sources, 2001, 96(2): 352–368
[3] 吴小娟. 固体氧化物燃料电池/微型燃气轮机混合发电系统的建模与控制[D]. 上海: 上海交通大学, 2009.
[4] SELMA A, EMILIO P. Direct utilization of carbonaceous fuels in multifunctional SOFC anodes for the electrosynthesis of chemicals or the generation of electricity[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13927–13938
[5] ZIA U D, ZAINAL A. Biomass integrated gasification SOFC systems: technology overview[J]. Renewable and Suatainable Energy Reviews, 2016(53): 1356–1376
[6] CAMBLONG H, BAUDOIN S, VECHIU I, et al. Design of a SOFC/GT/SCs hybrid power system to supply a rural isolated microgrid[J]. Energy Conversion and Management, 2016, 117(1): 12–20
[7] YU P, LUO Z Y, WANG Q H, et al. Life cycle assessment of transformation from a subcritical power plant into a polygeneration plant[J]. Energy Conversion and Management, 2019, 198: 111801
[8] JANA K, RAY A, MAJOUMERD M M, et al. Poly-generation as a future sustainable energy solution-A comprehensive review[J]. Applied Energy, 2017, 202: 88–111
[9] MURUGAN S, HORGAK B. Tri and polygeneration systems-A review[J]. Renew Sustainable Energy Reviews, 2016, 60: 1032–1051
[10] AZIZI M A, BROUWER J. Progress in solid oxide fuel cell-gas turbine hybrid power systems: system design and analysis, transient operation, controls and optimization[J]. Applied Energy, 2018, 215: 237–289
[11] CINTI G, DISCEPOLI G, SISANI E, et al. SOFC operating with ammonia: stack test and system analysis[J]. international Journal of Hydrogen Energy, 2016, 41(31): 13583–13590
[12] MENG Q S, HAN J T, KONG L, et al. Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon doxide cycle[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4673–4678
[13] 李杨, 翁一武. 固体氧化物燃料电池–燃气轮机混合动力系统的性能及控制策略分析[J]. 中国电机工程学报, 2010, 30(35): 94–100
[14] 王巍, 李贺, 王晓放. SOFC/MGT混合发电系统变工况控制模式及性能分析[J]. 大连理工大学学报, 2013, 53(5): 653–658
[15] 吕小静, 耿孝儒, 朱新坚, 等. 以木片气为燃料的中温型固体氧化物燃料电池/燃气轮机混合动力系统性能研究[J]. 中国电机工程学报, 2015(1): 133–141
LV Xiaojing, GENG Xiaoru, ZHU Xinjian, et al. Study on the performance of a mid-temperature solid oxide fuel cell/gas turbine hybrid power system using wood chip gas as fuel[J]. Proceedings of the Chinese Society of Electrical Engineering, 2015(1): 133–141
[16] 党政, 赵华, 席光. 天然气重整SOFC/MGT混合分布式供能系统性能分析[J]. 太阳能学报, 2011, 32(6): 941–946
[17] 刘爱虢, 王冰, 翁一武, 等. 生物质-燃料电池/燃气轮机发电系统特性研究[J]. 农业机械学报, 2014, 45(8): 178–183
[18] 张军, 孙崎胜, 吴晓燕, 等. 污泥热解气为燃料的SOFC-MGT联合发电系统能效分析[J]. 环境工程学报, 2016, 10(11): 6642-6648.
[19] 詹海洋, 梁前超, 朱润凯, 等. 燃料电池-燃气轮机底层循环性能研究[J]. 舰船科学技术, 2018, 40(15): 76–80
ZHAN Haiyang, LIANG Qianchao, ZHU Runkai, et al. Study on the performance of fuel cell-gas turbine bottom cycle[J]. Ship Science and Technology, 2018, 40(15): 76–80
[20] 朱润凯, 梁前超, 闫东, 等. 固体氧化物燃料电池与微型燃气轮机联合发电建模仿真研究[J]. 舰船科学技术, 2017, 39(7): 95–99
ZHU Runkai, LIANG Qianchao, YAN Dong, et al. Study on modeling and simulation of combined power generation of solid oxide fuel cell and micro gas turbine[J]. Ship Science and Technology, 2017, 39(7): 95–99
[21] 吕小静, 陆超豪, 耿孝儒, 等. 水蒸气对IT-SOFC/GT混合动力系统性能的影响[J]. 工程热物理学报, 2016, 37(4): 705–710
LV Xiaojing, LU Chaohao, GENG Xiaoru, et al. The effect of water vapor on the performance of IT-SOFC/GT hybrid power system[J]. Journal of Engineering Thermophysics, 2016, 37(4): 705–710
[22] SAISIRIRAT P. The solid oxide fuel cell (SOFC) and gas turbine (GT) hybrid system numerical model[J]. Energy Procedia, 2015, 79: 845–850
[23] YOU H, HAN J, LIU Y, et al. 4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator[J]. Energy, 2020, 206: 118122
[24] STILLER C. Design, operation and control modelling of SOFC-GT hybrid systems[D]. Trondheim: Norwegian University of Science and Technology, 2006.
[25] LV X J, LIU X, GU C H, et al. Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system[J]. Energy, 2016, 99: 91–102
[26] FONTELL E, KIVISAARI T,CHRISTIANSEN N, et, al. Conceptual study of a 250 kW planar SOFC system for CHP application[J]. Journal of Power Sources, 2004.
[27] LU Y, SCHAEFER L. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas[J]. Journal of Power Sources, 2004, 135(1–2): 184–191
[28] BOVE R, LUNGHI P, SAMMES N M. SOFC mathematic model for systems simulations. Part one: From a micro-detailed to macro-black-box model[J]. International Journal of Hydrogen Energy, 2005, 30(2): 181–187
[29] ZHANG Jian. Characteristic analysis of combined cycle of solid oxide fuel cell and gas turbine [D]. North China Electric Power University (Baoding), 2007
[30] YUAN Chun, CHEN Binbing, CHEN Zhaohai, et al. Micro gas turbine power generation technology [M]. Beijing, Mechanical Engineering Press, 2012: 98-130.