针对水下探测设备的方位分辨力在物理上受限于阵列有效孔径的约束,导致探测精度较低的问题,提出一种基于时空特征融合的水下目标波束形成算法。首先,以目标声散射回波产生机理为基础,建立走航声呐回波数据动态数学模型;其次,通过对目标声散射回波数据的时空域转换得到等效空间阵列,融合空域多快拍数据实现阵元基阵孔径的物理扩展。最后,分析干扰信混比、探测平台移动速度等对回波增强的影响。数据仿真结果表明所提方法能够有效抑制干扰,获得主瓣更窄的波束。孔径扩展后的波束形成能够准确地分辨出非常相近的目标。此外,实验结果测得探测平台运动速度大小对目标分辨的效果影响不明显。
In order to solve the problems that the azimuth resolution of underwater detection equipment is physically limited by the effective aperture of the array, the detection accuracy is low, and present an research on underwater target beamforming method based on time and spatial domain feature fusion. Firstly, based on the mechanism of target acoustic scattering echo, a dynamic mathematical model of sonar echo data is established. Secondly, the equivalent spatial array is obtained by transforming the target acoustic scattering echo data in time and space domain, and the physical expansion of the array aperture is realized by fusing the spatial multi-snapshot data. Finally, the effects of jamming-to-signal ratio and moving speed of detection platform on echo enhancement are analyzed. The data simulation results show that: the proposed method can effectively suppress interference and obtain a beam with narrower main lobe. Beamforming after aperture expansion can accurately distinguish very close targets. In addition, the experimental results show that the velocity of the detection platform has no obvious influence on the target resolution.
2022,44(11): 140-145 收稿日期:2021-07-23
DOI:10.3404/j.issn.1672-7649.2022.11.029
分类号:TB566
基金项目:国家自然科学基金资助项目(61901079)
作者简介:丁元明(1967-),男,教授,研究方向为水下信号处理
参考文献:
[1] 王明宇, 朱威. 非等间距矢量阵虚拟阵元波束形成[J]. 电声技术, 2012, 36(4): 42–45
[2] 孙超. 水下多传感器阵列信号处理[M]. 西安: 西北工业大学出版社, 2007.
[3] SHAIKH A H, DANG X, AHMED T, et al. MIMO radar array configuration with enhanced degrees of freedom and increased array aperture. Circuits Systems and Signal Processing, 2020(10).
[4] BELLONI f, RICHTER A, KOIVUNEN V. DOA estimation via manifold separation for arbitrary array structures[J]. IEEE Transactions on Signal Processing, 2007, 55(10): 4800–4810
[5] 胡鹏. 虚拟阵元波束形成方法研究[D]. 西安: 西北工业大学, 2006.
[6] 向腾. 混响环境下的语音增强研究[D]. 南京: 南京大学, 2020.
[7] LI Xiu-kun, LI Ting-ting, XIN Liu. Array gain of fourth-order cumulants beamforming under typical probability density background[J]. Chinese Journal of Acoustics, 2015, 34(1): 15–26
[8] 周龙. 基于内插变换虚拟阵列波束形成技术研究[D]. 天津: 天津理工大学, 2018.
[9] 李平安, 许家栋. 一种估计信号源方向的虚拟阵列方法[J]. 西北工业大学学报, 1999, 17(4): 505–508
[10] SANUDIN R, ERDOGAN A , ARSLAN T. Modified linear prediction algorithm with low bias estimator[C]//International Conference on Radar Systems. IET, 2013: 1-5.
[11] WAN F G, JIN M, QIAO X L. Source localization based on symmetrical MUSIC and its statistical performance analysis[J]. Science China Information Sciences, 2013, 56(6).
[12] 罗展. 基于虚拟阵列技术的DOA估计研究[D]. 成都: 西南交通大学, 2012.
[13] 何国锋, 聂俊伟, 伍微, 等. 基于单天线的GNSS合成孔径技术研究进展[J]. 全球定位系统, 2015, 40(5): 41–45
[14] 王舟. 毫米波大规模阵列天线波束扫描技术研究[D]. 杭州: 杭州电子科技大学, 2019.
[15] 张伟民, 郭海涛, 金其余, 等. 基于最小一乘的虚拟阵元波束形成仿真研究[J]. 声学技术, 2020, 39(2): 134–140
[16] 潘菲. 阵列天线虚拟扩展及其波束形成研究[D]. 天津: 天津理工大学, 2019.
[17] 许萌, 杨阳, 徐磊, 等. 基于压缩感知的空间虚拟阵列波束形成技术[J]. 光学与光电技术, 2020, 18(2): 47–54
[18] 杨阳. 水下目标声散射信号的盲分离研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[19] 李昌志, 田杰, 张扬帆, 等. 水下目标的声呐回波数据仿真[J]. 微计算机应用, 2011, 32(4): 56–60