为降低泵喷推进器的横滚扭矩,采用正交模拟试验的方法对后置定子泵喷推进器进行分析,通过计算流体力学(CFD)对正交试验的不同组合后置定子泵喷推进器进行预报。以效率和扭矩系数为评价指标,分析定子叶片数量、定子安装角度、定转子安装距离、定子弦长对水动力性能的影响程度,并得出最优模型参数。最优模型相对原始模型横滚扭矩降低了76%,效率提升了4%,优化模型的尾部流场稳定性优于原始模型。后置定子的安装角度对平衡泵喷推进器的扭矩,提升推进器的效率具有重要作用。
In order to reduce the roll torque of the pump-jet propulsor, the orthogonal simulation test was used to analyze the rear-stator pump-jets, and the different combinations of the rear-stator pump-jets were predicted by computational fluid dynamics (CFD). Taking efficiency and torque coefficient as evaluation indexes, the influences of stator blade number, stator installation angle, fixed rotor installation distance and fixed chord length on hydrodynamic performance were analyzed, and the optimal model parameters were obtained. Compared with the original model, the roll torque of the optimal model is reduced by 76%, and the efficiency is improved by 4%. The stability of the tail flow field of the optimized model is better than that of the original model. The installation angle of the rear stator plays an important role in balancing the torque and improving the efficiency of the pump injection propeller.
2022,44(12): 10-15 收稿日期:2021-08-06
DOI:10.3404/j.issn.1672-7649.2022.12.003
分类号:U661.31+3
基金项目:国家重点研发计划资助项目(2020YFC1521704)
作者简介:武建国(1980-),男,博士,研究员,研究方向为水下机器人平台、水下机器人自适应性控制、流场感知
参考文献:
[1] QIU Cheng-cheng, HUANG Qiao-gao, PAN Guang, et al. Numerical simulation of hydrodynamic and cavitation performance of pump jet propulsor with different tip clearances in oblique flow[J]. Ocean Engineering, 2020: 209
[2] 刘业宝. 水下航行器泵喷推进器设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[3] BRUCE E P, GEARHART W , ROSS J. The design of pumpjets for hydrodynamic propulsion[J] Fluid Mechanics, Acoustics and Design of Turbomachinery, Part 1, NASA SP-1974, 304: 795–839.
[4] 饶志强, 李巍, 杨晨俊. 定子参数变化对前置定子导管桨性能的影响[J]. 上海交通大学学报, 2013, 47(2): 269-273
RAO Z Q, LI W, YANG C J. The effect of stator parameters on performance of ducted propeller with pre-swirl stators[J]. Joural of Shanghaijiaotong University, 2013, 47(2): 269-273
[5] 彭云龙, 王永生, 刘承江, 等. 前置与后置定子泵喷推进器的水动力性能对比[J]. 哈尔滨工程大学学报, 2019, 40(1): 132–140
PENG Y L, WANG Y S, LIU C J, et al. Comparative analysis of the hydrodynamic performance of front-stator and rear-stator pump-jets[J]. Journal of Harbin Engineering University, 2019, 40(1): 132–140
[6] 蔡昊鹏, 苏玉民. 扭矩平衡式水下机器人推进器研究[J]. 船舶力学, 2009, 13(2): 210–216
CAI H P, SU Y M. A study on torque balanced propulsors for autonomous underwater vehicles[J]. Journal of Ship Mechanics, 2009, 13(2): 210–216
[7] 毛卫. 带前置定子导管桨流场数值分析及验证[J]. 舰船科学技术, 2014, 36(6): 92–96+101
MAO W. The flow field numerical analysis and validation for ducted propeller with pre-stator[J]. Ship Science And Technology, 2014, 36(6): 92–96+101
[8] 谷浪. 鱼雷泵喷推进器设计及水动力性能预报方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[9] 段相杰, 董永香, 冯顺山, 等. 泵喷推进航行体有动力流场数值仿真[J]. 弹箭与制导学报, 2012, 32(3): 161–163+170
DUAN X J, DONG Y X, FENG S S, et al. The numerical simulation of flow field for underwater vehicle with pump jet propulsion[J]. Journal of Projectiles Rockets Missiles and Guidance, 2012, 32(3): 161–163+170
[10] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.