本文根据吊舱推进船舶在静水工况中的自航仿真模拟方法,通过装载2种不同螺距比的吊舱推进器,分析比较对应豪华邮轮船模-吊舱推进器在静水工况中固定自航点状况下的推进效率值,进而确定使船模推进性能最佳的吊舱推进器。针对某大型豪华邮轮的吊舱推进器,基于STAR-CCM+仿真软件对螺距比不同的2个吊舱推进器进行敞水性能仿真,并比较分析这2种吊舱推进器敞水效率,得出2号吊舱推进器比1号吊舱推进器敞水性能提升了4.334%。对邮轮船模进行阻力预测仿真,预测豪华邮轮在设计工况下的船舶阻力,对装载2种吊舱推进器的邮轮船模进行自航数值仿真,分析2种吊舱推进器对邮轮推进性能的影响。结果表明,在静水工况拟定的自航点工况下即吊舱桨转速为132.4 r/min,船模航速为10.408 m/s时,装载2号吊舱推进器豪华邮轮在静水条件下的推进效率比1号吊舱推进器增加2.580%。
This paper aims to analyze and compare the corresponding luxury cruise ship model-pod propeller in still water conditions by loading two pod propellers with different pitch ratios according to the self-propelled simulation test method of a pod propelled ship in still water conditions. Fix the propulsion efficiency value under the condition of fixed self-home point, and then determine the pod propeller that makes the ship model propulsion performance the best. Aiming at the pod propeller of a large luxury cruise ship, based on the STAR-CCM+ simulation software, two pod propellers with different pitch ratios were simulated in open water, and the open water efficiency of the two pod propellers was compared and analyzed. The open-water performance of the No. 2 pod thruster is 4.334% higher than that of the No. 1 pod thruster. Carry out resistance prediction test simulation on cruise ship model, predict the ship resistance of luxury cruise ship under design conditions, carry out self-propelled test simulation on cruise ship model loaded with two pod propellers, and analyze the propulsion of cruise ship by two pod propellers Performance impact. The results show that the propulsion efficiency of the luxury cruise ship with No. 2 pod propeller under static water conditions is higher than that of the pod propeller at 132.4 r/min and the model ship speed at 10.408 m/s under the conditions of the self-propelled point prepared under the static water conditions. No. 1 pod thruster increased by 2.580%.
2022,44(12): 22-27 收稿日期:2021-07-19
DOI:10.3404/j.issn.1672-7649.2022.12.005
分类号:U661.31+3
基金项目:工业和信息化部高技术船舶项目
作者简介:周新聪(1964−),男,博士,教授,研究方向为摩擦学、机械故障诊断
参考文献:
[1] WANG Jian-hua, ZOU Lu, WAN De-cheng. CFD simulations of free running ship under course keeping control[J]. Ocean Engineering, 2017, 141: 450–464
[2] 程宣恺, 周志勇, 陈康, 等. 船模自航试验数值模拟研究[J]. 船舶与海洋工程, 2013(03): 10–15
[3] 祝志超, 熊鹰. 基于CFD预报双桨式吊舱推进器水动力性能[J]. 舰船科学技术, 2016, 38(5): 14–19
[4] 梅蕾, 周军伟, 倪豪良. 大螺距对转导管螺旋桨的水动力分析[J]. 中国舰船研究, 2016, 11(5): 42–47,54
[5] 袁帅, 邹璐, 邹早建, 等. 拖式吊舱推进器敞水中直航和操舵工况水动力性能数值预报[J]. 中国造船, 2020, 61(S2): 37–51
[6] Hrvoje Jasak, Vuko Vukčević, Inno Gatin, et al. CFD validation and grid sensitivity studies of full scale ship self propulsion[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 11(1): 33–43
[7] 李亮, 王超, 孙帅, 等. 实船自航试验数值模拟及尺度效应分析[J]. 哈尔滨工程大学学报, 2016, 37(7): 901–907
[8] 贾宝柱, 纪然, 吴雷振, 等. 拖式与推式吊舱推进器水动力性能数值仿真及对比[J]. 大连海事大学学报, 2019, 45(1): 11–18
[9] 刘李为, 张志国, 王清, 等. 船舶快速性数值试验水池参数化建模方法研究[C]//第三十一届全国水动力学研讨会论文集(上册), 2020: 185-196.
[10] 李善成, 熊鹰, 王展智. 偏转工况下吊舱推进器的水动力和空泡性能[J]. 中国舰船研究, 2019, 14(1): 33–42
[11] 封培元, 吴永顺, 冯毅, 等. 吊舱推进豪华邮轮在波浪中的功率增加预报试验研究[J]. 中国舰船研究, 2020, 15(5): 11–16
[12] 邱耿耀, 吴乘胜. 船模波浪中自航CFD模拟研究[C]//2015年船舶水动力学学术会议论文集, 船舶力学学术委员会, 2015: 68–77.
[13] 祝启波, 王志东, 凌宏杰, 等. 基于滑移网格的带桨水面船自航性能预报研究[J]. 舰船科学技术, 2016, 38(17): 42–48
[14] 孙聪, 宋科委, 王超, 等. 船桨舵一体化耦合下的双桨船数值自航模拟[J]. 应用科技, 2020, 47(2): 1–5,11
[15] 盛振邦, 刘应中. 船舶原理 下[M]. 上海: 上海交通大学出版社, 2004.