现有的泊船姿态控制方法在计算海浪干扰结果时误差较大,为保证无人船航行过程中的稳定性,结合混合海浪作用,设计新的无人船泊船姿态自动控制方法。建立无人船运动模型,分别分析船体航行过程中的受力结果,并获取无人船运动的耦合方程;分别计算理想海浪模型与不同海况等级下的海浪模型,结合波幅频率计算混合海浪作用对无人船的干扰力;设计泊船姿态自动控制算法,设计控制器,将无人船的控制偏差输入进系统内,得到控制模型,并利用模型状态参量预测当前模型的控制结果,以调整无人船泊船姿态自动控制方法。在实验中,分别设定遭遇角角度为45°,90°,135°,测试3种对比控制方法的首摇角、横摇角以及舵角的响应角度。由实验结果可知,该控制方法在不同角度的遭遇角中,所得的响应角度均为3种对比方法中的最小值,可见该方法在3种方法中控制效果最好。
In order to ensure the stability of unmanned ship during navigation, combined with the action of mixed waves, a new automatic attitude control method for unmanned ship is designed. The motion model of unmanned ship is established, the force results of the ship during navigation are analyzed, and the coupling equation of unmanned ship motion is obtained. The ideal wave model and the wave model under different sea state levels are calculated respectively, and the interference force of the mixed wave on the unmanned ship is calculated combined with the wave amplitude frequency; Design the automatic attitude control algorithm and controller, input the control deviation of unmanned ship into the system, obtain the control model, and use the model state parameters to predict the control results of the current model, so as to adjust the automatic attitude control method of unmanned ship. In the experiment, the encounter angles are set to 45 °, 90 ° and 135 ° respectively, and the response angles of yaw angle, roll angle and rudder angle of the three comparative control methods are tested. The experimental results show that the response angle obtained by this control method in the encounter angle of different angles is the minimum of the three comparison methods, which shows that this method has the best control effect in the three methods.
2022,44(12): 71-75 收稿日期:2022-01-09
DOI:10.3404/j.issn.1672-7649.2022.12.014
分类号:P731.2
基金项目:教育部科技发展中心高校产学研创新基金项目(2018C01044); 湖北省中华职业教育社教研项目(HBZJ20120125)
作者简介:赵洁(1983-),女,硕士,讲师,研究方向为船舶设计与制造
参考文献:
[1] 张彪, 彭秀艳, 高杰. 基于ELM-EMD-LSTM组合模型的船舶运动姿态预测[J]. 船舶力学, 2020, 24(11): 1413–1421
ZHANG B, GAO J, PENG X Y. Ship motion attitude prediction based on ELM- EMD-LSTM integrated model[J]. Journal of Ship Mechanics, 2020, 24(11): 1413–1421
[2] 孙珽, 徐东星, 尹勇, 等. 基于VDM与APSO优化极限学习机的船舶运动姿态预报[J]. 船舶工程, 2019, 41(11): 89–97
SUN T, XU D X, YIN Y, et al. Ship motion attitude prediction based on VDM and APSO optimized extreme learning machine[J]. Ship Engineering, 2019, 41(11): 89–97
[3] 徐得志, 任晋宇. 水下航行器垂向操纵运动数学仿真研究[J]. 中国水运(下半月), 2015, 15(12): 87–89
XU D Z, REN J Y. Mathematical simulation of vertical maneuvering motion of underwater vehicle[J]. China Water Transport, 2015, 15(12): 87–89
[4] 任晋宇. 潜艇操纵运动粘性绕流数值模拟[D]. 武汉: 华中科技大学, 2009.
[5] 高国章, 李修宇. 基于预测控制的水下自航器抗海浪变深控制分析[J]. 船舶工程, 2020, 42(6): 91–97
GAO G Z, LI X Y. Anti-wave depth control analysis of underwater self-propelled vehicle based on predictive control[J]. Ship Engineering, 2020, 42(6): 91–97
[6] 宋义超, 王五桂, 金颀. 一种穿浪双体船纵向运动姿态控制方案设计[J]. 船电技术, 2019, 39(S1): 32–37
SONG Y C, WANG W G, JIN Q. A scheme design for WPC longitudinal motion attitude control[J]. Marine Electric & Electronic Engineering, 2019, 39(S1): 32–37