在水下作业时,无人艇工况位姿的频繁变化明显影响艇体受到的工作阻力,对无人艇推进系统设计选型与流场空间模型构建带来困难。为此,应用分析流体力学(CFD)仿真软件Ansys中的Fluent模块对无人艇航行工况的各类位姿变化进行仿真分析,求解其受到的阻力。本文仿真设置模型选用Realizable k−ε湍流模型,并引入壁面函数来减少壁面湍流流动的干扰,优化后的模型能够提高仿真结果的精确度。通过样机试验获取测试数据,对比分析来评价仿真的准确性。研究表明:无人艇在直航过程中时受到较向上作用力,并随着航速提高有较为明显的增加;俯仰运动过程中无人艇的垂向力与俯仰力矩均与航速和攻角的的变化量呈正相关的变化关系;无人艇在水平变向时漂角对航行的所受横向力影响较大,受漂角变化对纵向力的影响不大。试验结果与仿真结果间偏差较小,证明了仿真模型的可信度,为无人艇后续结构改良与推进系统优化提供有效的参考信息。
During underwater operation, the frequent changes of working conditions and postures of AUV(autonomous underwater vehicle) obviously affect the working resistance of the boat body, which brings difficulties to the design and selection of propulsion system and the construction of flow field spatial model of AUV. To solve this problem, the AUV model is established and simplified by using 3D design software, and the model is simulated and analyzed by using FLUENT module in computational fluid dynamics (CFD) simulation software ANSYS. Compared with the standard turbulence model widely used in fluid simulation, the Realizable turbulence model is selected as the simulation setting model in this paper, and the wall function is introduced to reduce the interference of wall turbulent flow. The optimized model can improve the accuracy of simulation results. The accuracy of simulation is evaluated by comparing and analyzing the experience data obtained from prototype experience. The results show that the AUV is subjected to upward force during direct flight, and it increases obviously with the increase of speed; The vertical force and pitching moment of AUV are positively correlated with the change of speed and attack angle during pitching motion When the AUV changes direction horizontally, the drift angle has great influence on the transverse force, but the drift angle has little influence on the longitudinal force. The deviation between the experience results and the simulation results is small, which proves the credibility of the simulation model and provides effective reference information for the subsequent structural improvement and propulsion system optimization of AUV.
2022,44(12): 76-82 收稿日期:2021-03-05
DOI:10.3404/j.issn.1672-7649.2022.12.015
分类号:U661.39
基金项目:国家重点研发计划资助项目(2018YFC0307900)
作者简介:刘芳华(1972-),女,博士,教授,研究方向为机电系统工程与一体化技术、多体动力学及机器人技术等
参考文献:
[1] 孙梦瑶, 刘玉红, 黄明龙, 等. 测量型深水AUV垂直面等运动稳定性设计[J]. 机械科学与技术, 2016, 35(9): 1402–1407
[2] G YA DYNNIKOVA, P R ANDRONOV. Expressions of force and moment exerted on a body in a viscous flow via the flux of vorticity generated on its surface[J]. European Journal of Mechanics / B Fluids, 2018, 72: 293–300
[3] 漆小舟, 缪爱琴, 万德成. 水下潜器航行水动力导数CFD计算[J]. 水动力学研究与进展: A辑, 2018, 33(3): 297–304
[4] 黄东, 王成华, 徐宏水. 船体清刷机器人水动力阻力计算及其结构优化[J]. 声学与电子工程, 2016(4): 42–46
HUANG Dong, WANG Cheng-huang, XU Hong-shui. Hydrodynamic resistance calculation and structure optimization of ship cleaning robot[J]. Acoustics and Electronics Engineering, 2016(4): 42–46
[5] 姜钧喆. 水下滑翔机总体设计与水动力性能分析[D]. 上海, 上海交通大学, 2018.
[6] 高婷, 庞永杰, 王亚兴, 等. 水下航行器水动力系数计算方法[J]. 哈尔滨工程大学学报, 2019, 40(1): 178–184
GAO Ting, PANG Yong-xin, WANG Ya-xing, et al. Calculation method of hydrodynamic coefficients for underwater vehicles[J]. Journal of Harbin Engineering University, 2019, 40(1): 178–184
[7] 王太友, 胡以怀, 张宝吉, 等. 考虑螺旋桨体积力的水下机器人水动力特性仿真[J]. 船舶工程, 2018, 40(1): 12–16+60
[8] 刘芳华, 李鑫. 水下捕捞机器人水动力学性能分析[J]. 机械与电子, 2020(6): 55–61
[9] 于庚. 1200米级深水作业型机器人水动力及运动响应性能研究[D]. 镇江, 江苏科技大学, 2019.
[10] 邵杰, 李晓花, 郭振江, 等. 不同湍流模型在管道流动数值模拟中的适用性研究[J]. 化工设备与管道, 2016, 53(4): 66–71
[11] 郑海斌. 水下机器人水动力性能分析及其运动控制方法的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[12] 黄乐萍. 壁湍流的展向运动减阻机理研究[D]. 南京: 南京理工大学, 2012.
[13] TANG S, URA T, NAKATANI T, et al. Estimation of the hydrodynamic coefficients of the complex-shaped autonomous underwater vehicle TUNA-SAND[J]. Journal of marine science and technology, 2009, 14(3): 373–386
[14] PRESTERO T T J. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D]. Massachusetts institute of technology, 2001.
[15] 陈英龙, 宋男, 张增猛等. 低速域水下遥控机器人水动力试验系统设计[J]. 液压与气动, 2019(2): 13–17