诱饵发射装置发射诱饵时,出管速度是一个重要指标,速度越低其出管安全性越危险,速度太高则存在较大发射噪声,因此研究一种有效方法确定合适的出管速度有重要意义。为满足能量利用最优,不同深度下实现上述出管速度还需对内弹道进行智能控制。本文基于刚体运动六自由度模型进行理论计算,对诱饵出管外弹道特性及出管安全性进行研究;建立某气动不平衡式发射装置“高压气瓶-控制阀-诱饵发射管”系统内弹道模型,为内弹道智能控制奠定应用基础。研究结果表明艇速越快,发射诱饵时安全离艇所需的出管速度要求越高。通过采用多元拟合方法,获得了控制阀芯运动速度控制律与安全离艇出管速度和发射深度之间的关系式,适用于内弹道智能控制研究。
Terminal velocity of the decoy during launch process is a key indicator, particularly the lower the speed, the more dangerous it is to guarantee safety as well as the higher the speed, the louder the emission noise appears. Thus, it is of great significance to study an effective method to decide the terminal velocity of the decoy. In order to realize the above terminal velocity of the decoy at different depths based on optimization of energy utilization, the internal ballistic must be controlled intelligently in launch process. In this paper, the calculation is carried out to obtain the external ballistic characteristics and the launch safety of the decoy based on the motion theory of 6DOF model of rigid body. According to a pneumatic unbalanced launcher which includes the systems of the high pressure gas bottle, the control valve and the tube, the model of internal ballistic is established, which is the foundation of intelligent control of the internal ballistic. The results show that the higher the velocity of the submarine, the higher the velocity of decoy is required to ensure the launch safety. Finally, by means of multivariate fitting, the motion law of the spool related to terminal velocity of the decoy and the depth of the launch is obtained as instruction to guide the research on intelligent control of the internal ballistic.
2022,44(12): 173-180 收稿日期:2021-08-07
DOI:10.3404/j.issn.1672-7649.2022.12.036
分类号:TJ630
作者简介:杨弓熠(1994-),男,硕士,工程师,研究方向为鱼雷发射装置
参考文献:
[1] 潘光. 鱼雷力学[M]. 陕西: 陕西师范大学出版社, 2013.
[2] WANG Z, WU Z. Six-DOF trajectory optimization for reusable launch vehicles via Gauss pseudospectral method[J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 434–441
[3] 宣建明. 水声对抗器材发射安全性研究[A]. 发射技术论文集, 七〇五所昆明分部, 2000, 371–381.
[4] 华琦, 段浩, 等. 鱼雷水下发射的6-DOF运动仿真[J]. 舰船科学技术, 2019, 41(4): 137–141
[5] MA D L, WANG S Q, YANG M Q, et al. Dynamic simulation of aerial towed decoy system based on tension recurrence algorithm[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1484–1495
[6] LI Z H, ZHANG Z H, WANG S Z. The safety measure for the torpedo decoy after launching [C]// Proceedings of the 2002 International Symposium on Safety Science and Technology (2002 ISSST), 2002, 7.
[7] 段浩. 鱼雷发射技术[M]. 北京: 国防工业出版社, 2015.
[8] 李忠杰, 王树宗, 等. 气动式水下发射装置的可调节发射阀仿真研究[J]. 系统仿真学报, 2005, 17(12): 3074–3075+3080
[9] 练永庆, 王树宗, 等. 气动式水下发射器的发射阀仿真设计研究[J]. 兵工学报, 2003, 24(3): 354–358
[10] 黄苏和, 王凯帅, 刘星. 潜用AUV自航发射弹道建模与仿真[J]. 水下无人系统学报, 2018, 26(2): 129–132
[11] 练永庆, 周厚成, 吴开锋, 等. 气动不平衡式发射装置气水回收过程仿真与分析[J]. 鱼雷技术, 2012, 20(3): 220–224
[12] 唐树辉. 潜用气动鱼雷发射装置大深度发射技术研究[A]. 发射技术论文集, 七〇五所昆明分部, 2000, 93–98.
[13] 李继刚, 陈华秋, 等. 浅述多元数据处理的一种简化拟合形式及算法剖析[J]. 海洋技术, 2002, 21(3): 1–4
[14] 鲁子双, 丁福康. 水面舰艇鱼雷发射装置气动发射内弹道微分解法[A]. 发射技术论文集, 七〇五所昆明分部, 2000, 237–240.
[15] 秦楠, 马亮, 秦庚申. 液压平衡式发射装置自航发射内弹道模型与仿真[J]. 火力与指挥控制, 2014, 39(9): 87–90.