为了研究不同树脂基体的老化特性,对常见的3种树脂开展了吸水性试验和耐水性加速老化试验,并对树脂在每个老化试验周期下分别开展压缩特性试验研究。研究结果表明,430LV乙烯基树脂吸水率为0.076%,3201乙烯基脂树脂吸水率为0.168%,350环氧树脂吸水率为0.213%;在常规试验中,3种树脂压缩载荷/位移曲线变化规律基本一致,整体呈现线弹性阶段→屈服平台阶段→屈服强化三阶段变化规律;在老化试验各个周期的湿热吸水和后固化联合作用下,3种树脂压缩载荷/位移曲线变化规律与常规压缩试验一致,但剩余压缩强度保留率差别较大。
In order to study the aging characteristics of different resin matrix, the water absorption test and the water resistance accelerated aging test were carried out for the three common resins, and the compression properties of the resin were studied respectively under each aging test cycle. The results show that:The water absorption of 430lv vinyl resin, 3201 modified epoxy vinyl resin and 350 epoxy resin were 0.076%, 0.168% and 0.213%, respectively.In the conventional test, the compression load / displacement curves of the three resins are basically the same, showing a three-stage change law: linear elastic stage → yield platform stage → yield strengthening stage; Under the combined action of hygrothermal water absorption and post curing in each cycle of aging test, the change rule of compression load / displacement curve of three resins is consistent with that of conventional compression test, but the residual compressive strength retention is quite different.
2022,44(13): 81-84 收稿日期:2021-06-19
DOI:10.3404/j.issn.1672-7649.2022.13.019
分类号:TB332
基金项目:国家自然科学基金面上资助项目(51479205);国家自然科学基金资助项目(51609252),海军工程大学自主立项资助项目(2020505040)
作者简介:陈国涛(1990-),男,硕士,讲师,主要从事舰船复合材料结构应用工程及舰用材料选型研究等。
参考文献:
[1] 陈国涛, 邓波, 梅志远. S2/430LV复合材料拉-剪疲劳材料许用值试验[J]. 中国舰船研究. 2016, 11(3): 55-60.
CHEN Guotao, DENG Bo, MEI Zhiyuan. Experimentalstudy of limits on the tension-shear fatigue of S2/430LV composite materials[J]. Chinese Journal of Ship Research, 2016, 11(3): 55-60.
[2] 刘文珽. 结构可靠性设计手册[M]. 北京: 国防工业出版社, 2008: 143-200.
[3] PALCAM, KRAWCZUK M. Vibration parameters for damage detection in structures[J]. Journal of Sound and Vibration, 2002, 249(5): 999–1000
[4] TANG Xiao-dong, WHITCOMB J D, LI Yan-mei, et al. Micromechanics modeling of moisture diffusion in woven composites[J]. Composites Science and Technology, 2005(65): 817–826
[5] 张笑梅, 郭万涛. 纤维增强树脂基复合材料环境加速老化性能研究[J]. 材料开发与应用, 2017(4): 41-45.
[6] TOUNSI A, AMAAR K H, ADDA-BEDIA E A. Analysis of transverse cracking and stiffness loss in cross ply- laminates with hydrothermal conditions[J]. Computational Materials Science, 2005(32): 167–174
[7] 沈真, 张晓晶. 复合材料飞机结构强度设计与验证概论[M]. 上海. 上海交通大学出版社, 2011: 1-11.
[8] 沈观林, 胡更开. 复合材料力学[M]. 北京. 清华大学出版社, 2015: 1-5.
[9] 高建业, 洪彬, 等. 碳纤维增强用环氧树脂的湿热老化规律研究[J]. 热固性树脂, 2018(9): 56–59
GAO Jianye, HONG Bin, GAO Zhendong, etal. Study on the hydrothermal aging law of carbon fiber reinforced epoxy resins[J]. Thermosetting Resin, 2018(9): 56–59
[10] 熊涛, 杨斌, 雄杰等. 乙烯基酯树脂浇铸体的高应变率压缩响应行为[J]. 复合材料学报, 2006(12): 46–51
XIONG Tao, YANG Bin, XIONG jie, etal. Effect of strain rate on the compression behavior of vinyl ester resin casting[J]. Acta Materiae Compositae Sinica, 2006(12): 46–51