为了研究运动自由度对水下仿生扑翼运动性能的影响,对海洋生物鳍状前肢运动特点进行分析,建立基于简谐运动的不同自由度扑翼的运动模型。采用计算流体力学的方法,基于Realizable $k - \varepsilon $湍流模型,结合动网格技术对单自由度、二自由度和三自由度扑翼的性能进行计算对比,并对流场开展了分析。计算结果表明,二自由度扑翼最具经济性,扑翼运动过程中的前沿涡和尾涡随运动的自由度发生改变,且对扑翼的性能产生了显著影响。研究结果对水下仿生扑翼推进技术的研究提供了重要参考。
In order to study the effect of freedom of motion on performance of underwater bionic flapping foil, through the analysis of marine life's fin forelimb movement characteristics, the flapping foil motion model with different freedom is established based on simple harmonic motion. Using computational fluid dynamics method, based on Realizable $k - \varepsilon $ turbulence model, combined with dynamic mesh technology, the performance of single-degree-of-freedom, two-degree-of-freedom and three-degree-of-freedom flapping foil are calculated and compared, and the flow field is analyzed. The calculation results show that the two-degree-of-freedom flapping foil is the most economical; the leading vortex and trailing vortex generated by the motion of flapping foil change with the degree of freedom,and have a significant effect on the performance of flapping foil. The research results provide an important reference for the research of underwater bionic flapping foil propulsion technology.
2022,44(13): 107-110 收稿日期:2021-09-26
DOI:10.3404/j.issn.1672-7649.2022.13.024
分类号:TP242.3
作者简介:陈良军(1985-),男,硕士,工程师,主要研究领域为水下航行器结构设计与分析
参考文献:
[1] 喻俊志, 杜晟, 吴正兴. 高机动水下航行器研究现状[J]. 舰船科学技术, 2020, 42(12): 8–12
YU J Z, DU C, WU Z X. Research status of highly maneuverable bionic underwater vehicles[J]. Ship Science and Technology, 2020, 42(12): 8–12
[2] SCHOUVEILER L, FRANZ S H, MICHAEL S T. Performance of flapping foil propulsion[J]. Journal of Fluids and Structures, 2005, 20: 949−959.
[3] 杨璞. 扑翼的非定常水动力特性数值研究[J]. 计算机仿真, 2014, 31(8): 372–377
YANG P. Numerical research on unsteady hydrodynamic property of flapping-wing[J]. Computer Simulation, 2014, 31(8): 372–377
[4] 丁浩, 宋保维, 田文龙. 水下仿生扑翼推进性能分析[J]. 西北工业大学学报, 2013, 31(1): 150–157
DING H, SONG B W, TIAN W L. Exploring propulsion performance analysis of bionic flapping hydrofoil[J]. Journal of Northwestern Polytechnical University, 2013, 31(1): 150–157
[5] 宋保维, 邓军, 曹永辉, 等. 基于滑移网格海龟扑翼推进数值仿真研究[J]. 计算机仿真, 2011, 28(12): 149–154
SONG B W, DENG J, CAO Y H, Ding H. Numerical simulation study on turtle flapping- wing propulsion based on moving mesh[J]. Computer Simulation, 2011, 28(12): 149–154
[6] 曹永辉, 朝黎明, 丁浩, 等. 混合翼型对扑翼推进性能影响分析[J]. 上海交通大学学报, 2016, 50(8): 1228–1233
CAO Y H, CAO L M, DING H, et al. Propulsive performance of complex flapping foils[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1228–1233
[7] 杜晓旭, 张正栋. 四种扑动方式对水下扑翼推进性能影响数值分析[J]. 工程力学, 2018, 35(4): 249–257
DU X X, ZHANG Z D. Numerical analysis of four flapping modes on propulsion perfor- mance of underwater flapping foils[J]. Engineering Mechanics, 2018, 35(4): 249–257
[8] 刘晓白. 一种水下航行体的仿水翼法推进技术研究[D].哈尔滨: 哈尔滨工程大学, 2007.
[9] 傅德彬, 姜毅. 用动网格模拟导弹发射过程中的燃气射流流场[J]. 宇航学报, 2007, 28(2): 423–426
FU D B, JIANG Y. Simulation of jet flow during missile launching with dynamic mesh[J]. Journal of Astronautics, 2007, 28(2): 423–426