针对船用汽轮发电机组大幅变负荷与复杂外界影响因素等特点,剖析船用汽轮发电机组DEH系统结构和运行特性,构建汽轮机及其DEH系统模块化数学模型;针对传统粒子群算法易陷入局部最优导致收敛精度不足问题,提出引入自适应递减权重法和类似遗传算法的选择、杂交、变异操作进行改进,并采用标准测试函数验证了改进粒子群算法的优化精度与计算效率。基于改进粒子群算法实现DEH系统的参数辨识,其辨识精度和效率均优于典型智能算法。根据参数辨识结果,构建DEH系统的传递函数模型,并利用改进粒子群算法实现了汽轮机组不同工况及影响因素条件下的PID参数自整定,为船用汽轮发电机组DEH系统控制及运行优化提供支撑。
In view of the characteristics of large-scale load change and complex external factors of marine steam turbine generator, the paper analyzes the structure and operation characteristics of DEH system of marine steam turbine generator set, constructs the modular mathematical model of steam turbine and DEH system. Aiming at the problem that traditional particle swarm optimization algorithm is prone to local optimization and leads to insufficient convergence accuracy, the paper proposes the selection of adaptive decreasing weight method and similar genetic algorithm The hybrid and mutation operations are improved, and the optimization accuracy and calculation efficiency of the improved PSO are verified by standard test function; the parameter identification of DEH system is realized based on the improved PSO, and its identification accuracy and efficiency are better than the typical intelligent algorithm; according to the parameter identification results, the transfer function model of DEH system is constructed, and the improved PSO is used to realize the performance of the DEH system. The PID parameters of the turbine set are self-tuning under different working conditions and influencing factors, which provides a strong support for the DEH system control and operation optimization of marine steam turbine generator set.
2022,44(13): 126-131 收稿日期:2021-03-18
DOI:10.3404/j.issn.1672-7649.2022.13.028
分类号:TK263.7
基金项目:国家自然科学基金资助项目(51702364)
作者简介:林安(1996-),男,硕士研究生,研究方向为舰船动力及热力系统的科学管理
参考文献:
[1] 王锁斌, 钟晶亮, 王家胜, 等. 粒子群算法及其在汽轮机调节系统参数辨识中的应用[J]. 东北电力大学学报, 2017, 37(5): 51–55
WANG Suo-bin, ZHONG Jing-liang, WANG Jia-sheng, et al. Particle swarm optimization and its application in parameter identification of steam turbine governing system[J]. Journal of Northeast Electric Power University, 2017, 37(5): 51–55
[2] 苟小龙, 张杰, 王家胜, 等. 基于粒子群算法的汽轮机及其调速系统参数辨识方法[J]. 系统仿真学报, 2014, 26(7): 1511–1516
GOU Xiao-long, ZHANG Jie, WANG Jia-sheng, et al. Parameter identification of steam turbine and its governing system based on particle swarm optimization[J]. Journal of System Simulation, 2014, 26(7): 1511–1516
[3] 荀倩, 王培良, 李祖欣, 等. 基于递推最小二乘法的永磁伺服系统参数辨识[J]. 电工技术学报, 2016, 31(17): 161–169
XUN Qian, WANG Pei-liang, LI Zu-xin, et al. Parameter identification of permanent magnet servo system based on recursive least square method[J]. Journal of Electrotechnics, 2016, 31(17): 161–169
[4] 钟晶亮, 苟小龙, 邓彤天. 汽轮机及调节系统参数直接辨识法研究及应用[J]. 系统仿真学报, 2018, 30(9): 3312–3318
ZHONG Jing-liang, GOU Xiao-long, DENG Tong-tian. Research and application of direct parameter identification method for steam turbine and governing system[J]. Journal of System Simulation, 2018, 30(9): 3312–3318
[5] WEI Lai, ZHANG Jian, Parameter identification of comprehensive load modeling based on improved genetic algorithm[J]. IOP Conference Series: Earth and Environmental Science, 2018, 170(4).
[6] WU Zhihong, YANG Ruifeng, GUO Chenxia, et al. Analysis and verification of finite time servo system control with pso identification for electric servo system[J]. Energies, 2019, 12(18).
[7] 钟晶亮, 甘飞, 邓彤天. 基于改进型引力算法的汽轮机调速系统参数辨识[J]. 汽轮机技术, 2017, 59(6): 429–432
ZHONG Jing-liang, GAN Fei, DENG Tong-tian. Parameter identification of steam turbine governing system based on improved gravity algorithm[J]. Turbine technology, 2017, 59(6): 429–432
[8] 张艺川. 基于改进差分进化算法的汽轮机及其调速系统参数辨识方法研究[D]. 吉林: 东北电力大学, 2018.
[9] 余胜威. MATLAB优化算法案例分析与应用[M]. 北京: 清华大学出版社, 2015.
[10] 明宏全. 汽轮机组DEH参数辨识及实验平台设计的研究[D]. 上海: 上海交通大学, 2013.
[11] LIN G, LIU G. Tuning PID controller using adaptive genetic algorithms[C]// International Conference on Computer Science & Education. IEEE, 2010: 519–523.