为提高岛礁海区声呐目标探测能力,对实际海洋环境中目标辐射噪声在岛礁海区的声传播现象进行研究。考虑岛礁区域斜坡地形对声呐作用距离的影响,采用抛物方程 RAM方法,针对不同季节的声速剖面,以声呐优质因子为门限,仿真计算了岛礁斜坡背景下声呐在对不同深度目标探测时的有效作用距离。结果表明:声呐作用距离与水文条件密切相关,不同声呐在不同海洋地形环境中对不同位置目标的探测性能相差悬殊;由于冬季海洋环境的特殊性,表面声道的存在使得声呐在探测海面附近目标时,作用距离提高2~6倍;在斜坡顶部的目标,只能在距离相对较短的岛礁浅海区域进行探测,斜坡外缘目标深度越大,声呐探测效果越好;工作于表面波导内的声呐在300~1 800 Hz频带内,平均作用距离较小。
In order to improve the sonar target detection ability in the islands and reefs area, the sound propagation phenomenon of ship radiated noise in the islands and reefs area in the actual marine environment is studied. Considering the influence of the slope topography on the sonar range, the parabolic equation ram method is used to simulate the effective range of sonar in detecting targets at different depths under the background of the slope of the island and reef, taking the sonar quality factor as the threshold, according to the sound velocity profile in different seasons. The results show that: the range of sonar is closely related to the hydrological conditions, and the detection performance of different sonars in different marine terrain environment is very different; due to the particularity of the marine environment in winter, the range of sonar in detecting targets near the sea surface is increased by 2~6 times. The target on the top of the slope can only be detected on the island with relatively short distance When detecting in reef and shallow water area, the deeper the target on the outer edge of the slope is, the better the sonar detection effect is. The average operating range of sonar is small in the frequency band of 300~1 800 Hz.
2022,44(13): 132-138 收稿日期:2021-09-14
DOI:10.3404/j.issn.1672-7649.2022.13.029
分类号:TJ67
基金项目:国家自然科学基金资助项目(42006064,41876053);水声技术重点实验室稳定支持项目(JCKYS2020604SSJS003)
作者简介:原齐泽(1997-),男,硕士研究生,研究方向为水声物理、海洋科学领域
参考文献:
[1] 郁红波, 鞠建波, 魏帅, 等. 浅海海底地形对吊放声呐探测距离的影响[J]. 声学技术, 2021, 40(1): 49–56
YU Hong-bo, JU Jianbo, WEI Shuai. Effects of shallow seabed topography on the detection range of hanging sonar[J]. Technical Acoustics, 2021, 40(1): 49–56
[2] 杨日杰, 何友, 田宝国. 双基地航空声呐搜潜距离误差估计[J]. 兵工学报, 2004(5): 540–543
[3] 杨秀庭, 赵晓哲. 远程鱼雷目标主动声纳探测性能分析[J]. 兵工学报, 2012, 33(4): 503–507
[4] 张纪铃, 胡鹏涛. 浅海声速剖面对声呐作用距离的影响研究[J]. 电声技术, 2014, 38(10): 36–38
[5] 苏林, 马力, 宋文华, 等. 声速剖面对不同深度声源定位的影响[J]. 物理学报, 2015, 64(2): 272–279
[6] 曹震卿, 张永刚, 李庆红, 等. 季节因素对大西洋声传播的影响分析[J]. 应用海洋学学报, 2018, 37(4): 514–524
[7] 赵建昕, 过武宏. 浅海声速剖面结构变化对声呐作用距离的影响[J]. 海洋技术学报, 2020, 39(4): 22–28
[8] NORTHROP J, LOUGBRID M S, WERNER E W. Effects of near-source bottom conditions on long range sound propagation in the deep ocean[J]. Geophys, 1968, 73: 3905–3908
[9] 秦继兴, 张仁和, 骆文于, 等. 大陆坡海域二维声传播研究[J]. 声学学报, 2014, 39(2): 145–153
[10] 张乾初, 郭新毅, 马力. 岛礁区域斜坡地形对深海环境噪声级深度分布的影响[J]. 声学学报, 2019, 44(3): 329–336
[11] 胡治国, 李整林, 张仁和, 等. 深海海底斜坡环境下的声传播[J]. 物理学报, 2016, 65(1): 229–237
[12] 付留芳, 许林周, 李文哲. 浅海倾斜海底对声呐探测影响研究[J]. 舰船电子工程, 2020, 40(7): 172–177
[13] COLLINS MD. A split‐step Padé solution for the parabolic equation method[J]. The Journal of the Acoustical Society of America, 1998, 93(93): 1736–1742
[14] 杨一. 工作平台深度对被动声呐探测性能的影响[D]. 哈尔滨:哈尔滨工程大学, 2016.
[15] COLLINS MD. Generalization of the split-step Padé solution[J]. The Journal of the Acoustical Society of America, 1994, 96(1).
[16] COLLINS MD, CEDERBERG R J, KING D B, et al. Comparison of algorithms for solving parabolic wave equations[J]. The Journal of the Acoustical Society of America, 1996, 100(1): 178–182
[17] CEDERBERG R J, MD COLLINS. Application of an improved self-starter to geoacoustic inversion[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1): 102–109
[18] COLLINS MD, WESTWOOD E K. A higher-order energy-conserving parabolic equqation for range-dependent ocean depth, sound speed, and density[J]. Journal of the Acoustical Society of America, 1991, 89(3): 1068–1075
[19] 李凡, 郭圣明, 王鲁军, 等. 一种新的声纳作用距离指标评估方法[J]. 声学技术, 2009, 28(3): 235–239
[20] 李赶先, 龙建军. 南海南部海域岛礁区海底珊瑚砂声速影响因素的初步研究[J]. 海洋学报(中文版), 2014, 36(5): 152–160
[21] 李琳. 深海环境中水面目标和水下目标深度分类方法研究[D]. 西安:西北工业大学, 2015.
[22] Labianca F M. Normal modes, virtual modes and alternative representations in theory of surface-duct sound propagation[J]. The Journal of the Acoustical Society of America, 1973, 53(2): 1137–47