为能获取可以准确描述船舶运行状态的故障数据,提出海量船舶故障数据挖掘的模糊运算聚类算法。使用局部切空间排列算法从船舶运行数据提取船舶故障征兆变量,利用离散化算法完成离散化处理运用模糊运算聚类算法挖掘与各故障征兆变量离散化结果相匹配的船舶故障数据。实验结果表明,该方法具有较优良的船舶故障征兆变量降维效果,海量船舶故障数据挖掘性能较为理想。
In order to obtain the fault data that can accurately describe the ship operation status, a fuzzy operation clustering algorithm for massive ship fault data mining is proposed. The local tangent space permutation algorithm is used to extract the ship fault symptom variables from the ship operation data, the discretization algorithm is used to complete the discretization processing, and the fuzzy clustering algorithm is used to mine the ship fault data matching the discretization results of each fault symptom variable. The experimental results show that this method has a better effect of reducing the dimension of ship fault symptom variables, and the performance of massive ship fault data mining is ideal.
2022,44(13): 182-185 收稿日期:2022-01-16
DOI:10.3404/j.issn.1672-7649.2022.13.040
分类号:TP206.3
基金项目:邢台市科技局项目(2019ZC009)
作者简介:魏亚清(1982-),男,硕士,讲师,从事物联网技术、计算机网络及数据挖掘研究
参考文献:
[1] 申燕萍, 顾苏杭, 郑丽霞. 基于云计算平台的仿生优化聚类数据挖掘算法[J]. 计算机科学, 2019, 46(11): 247–250
SHEN Yanping, GU Suhang, ZHENG Lixia. Ionic optimized clustering data mining algorithm based on cloud computing platform[J]. Computer Science, 2019, 46(11): 247–250
[2] 李婧, 田洪祥, 刘韬, 等. 因子分析法在船舶柴油机润滑油发射光谱数据挖掘中的应用[J]. 润滑与密封, 2019, 44(7): 107–111
LI Jing, TIAN Hongxiang, LIU Tao, et al. Application of factor analysis for mining the ae spectrum data of marine diesel engine oil[J]. Lubrication Engineering, 2019, 44(7): 107–111
[3] 谢佩军, 高婷婷, 叶宏武. 量子粒子群优化核极限学习机的船舶变压器故障诊断[J]. 系统科学与数学, 2021, 41(7): 1807–1816
[4] 雷进宇, 初秀民, 蒋仲廉, 等. 内河船舶自动识别系统异常数据的可视分析[J]. 哈尔滨工程大学学报, 2020, 41(6): 840–845
LEI Jinyu, CHU Xiumin, JIANG Zhonglian, et al. Abnormal automatic identification system data by visual analytics[J]. Journal of Harbin Engineering University, 2020, 41(6): 840–845
[5] 黄文秀, 唐超尘, 神显豪, 等. 改进的k最邻近算法在海量数据挖掘中的应用[J]. 济南大学学报(自然科学版), 2021, 35(1): 24–28
[6] 常文兵, 苑星龙, 周晟瀚, 等. 基于文本分析的故障序列模式挖掘算法[J]. 计算机应用研究, 2019, 36(9): 2643–2646+2685
[7] 何洋洋, 王馨怡, 董晶. 基于经验小波变换与谱峭度的船舶轴系故障特征提取方法[J]. 中国舰船研究, 2020, 15(S1): 98–106
HE Yangyang, WANG Xinyi, DONG Jing. Fault feature extraction method for marine shafting based on empirical wavelet transform-spectral kurtosis[J]. Chinese Journal of Ship Research, 2020, 15(S1): 98–106
[8] 范爱龙, 李方轩. 基于实船监测的内河船舶能效数据特征挖掘及建模研究[J]. 武汉理工大学学报, 2020, 42(6): 26–34
FAN Ailong, LI Fangxuan. Feature mining and modeling research of inland river ship energy efficiency data based on real ship monitoring[J]. Journal of Wuhan University of Technology, 2020, 42(6): 26–34