船舶在实施靠泊、补给等操作时波浪中近距离两船或多船之间的水动力性能和干扰问题不容忽视。本文采用基于雷诺平均方程的方法对波浪中两船间的水动力干扰进行数值计算,应用STAR-CCM+软件模拟数值水池中的规则波造波和消波过程,分析规则波中两船在不同波长和不同横向间距条件下的横摇、垂荡运动响应特性以及横向力、垂向力等受力特性的变化规律。结果表明,当波长与船长的比值λ/L在0.5~1范围内变化时,两船所受的横向力和垂向力随波长的变化存在突变现象;当λ/L>1.5时,两船受力的变化较为平缓。在入射波波长λ一定的情况下,随着两船间距${S}/{L}$的增加,两船的横向力和垂向力呈现先增大后减小的趋势,两船的横向力和垂向力分别在${S}/{L}=$0.35和0.45时达到最大值。研究结果可为波浪中多浮体间的安全作业等提供数据基础。
Activities such as berthing, replenishment, rescue and other activities are becoming more and more common. The disturbance and hydrodynamic performance caused by short distance operation of ships cannot be ignored. In this paper,the method based on Reynolds-averaged equations is used to calculate the hydrodynamic disturbances between two ships in waves,the STAR-CCM+ software was used to simulate the wave generation and wave absorption of regular wave,the motion response characteristics and force characteristics of the two vessels in regular wave under different wave lengths and transverse distances were analyzed. The results show that when the ratio of wavelength to ship length λ/L varies from 0.5 to 1,the lateral force and vertical force suffered by both ships have a sudden change with the wavelength,and when the λ/L is greater than 1.5,the forces of two ships change little.When the wavelength of incident wave is constant,the lateral force and vertical force of the two ships increase first and then decrease with the increasing of the distance between two ships.The results of this paper can be the basis for the safe operation among multiple floating body system in waves.
2022,44(14): 6-11 收稿日期:2021-11-19
DOI:10.3404/j.issn.1672-7649.2022.14.002
分类号:U661.1
基金项目:中央高校基本科研业务费专项资金资助项目(2017II19XZ);国家自然科学基金资助项目(51409201)
作者简介:余欣怡 (1998-),女,硕士研究生,研究方向为船舶与海洋工程水动力性能
参考文献:
[1] INOUE Y, ISLAM M. Relative motions of multiple floating offshore structures[C]//Proceedings of the18th Offshore Mechanics and Arctic Engineering Conference, Canada, OMAE, 1999.
[2] FANG M C, CHEN G R. On three-dimensional solutions of drift forces and moments between two ships in waves[J]. Journal of Ship Research, 2002, 46(4): 280–288
[3] HONG S Y, KIM J H, CHO S K, et al. Numerical and experimental study on hydrodynamic interaction of side-by-side moored multiple vessels[J]. Ocean Engineering, 2005, 32(7): 783–801
[4] KASHIWAGI M, ENDO K, YAMAGUCHI H. Wave drift forces and moments on two ships arranged side in waves[J]. Ocean Engineering, 2005, 32(5/6): 529–555
[5] 郑平宇, 李鹏, 刘敬喜, 等. 两船并行补给过程中耐波性的分析[J]. 中国舰船研究, 2017, 12(2): 30–40,48
ZHENG Peng-yu, LI Peng, LIU Jing-xi, et al. Seakeeping analysis of two ships advancing parallel for underway replenishment[J]. Chinese Journal of Ship Research, 2017, 12(2): 30–40,48
[6] 何学军, 谭智尤, 余鹏. 横向补给状态下两船的摇荡运动特性[J]. 舰船科学技术, 2014, 36(10): 23–26
HE Xue-jun, TAN Zhi-you, YU Peng. Analysis of ship swaying motions of alongside replenishment[J]. Ship Science and Technology, 2014, 36(10): 23–26
[7] 周广礼, 董文才, 肖汶斌. 静水中并行两船水动力干扰数值研究[J]. 船舶力学, 2015, 19(3): 237–248
ZHOU Guang-li, DONG Wen-cai, XIAO Wen-bin. Numerical study on the hydrodynamic interaction of ship-ship models in calm water[J]. Journal of Ship Mechanics, 2015, 19(3): 237–248
[8] 王永学. 无反射造波数值波浪水槽[J]. 水动力学研究与进展(A辑), 1994, 9(2): 205–214
WANG Yong-xue. Numerical wave channel with absorbing wave-maker[J]. Journal of Hydrodynamics(Ser. A), 1994, 9(2): 205–214
[9] 邹志利, 邱大洪, 王永学. VOF方法模拟波浪槽中二维非线性波[J]. 水动力学研究与进展(A辑), 1996, 11(1): 93–103
[10] 刘加海. 二维水槽数值造波分析研究[J]. 黑龙江水利科技, 2006, 34(2): 39–41
[11] PARK J C, UNO Y, SATO T, et al. Numerical reproduction of fully nonlinear multi-directional waves by a viscous 3D numerical wave tank[J]. Ocean Engineering, 2006, 31(11/12): 1549–1565