深海载人潜水器作业过程中,耐压壳结构承受下潜(载荷增加)、巡航(上峰值保载)、上浮(载荷降低)、休整阶段(下峰值保载)和再次下潜的循环载荷作用。因此,针对潜水器用钛合金材料开展了疲劳、上峰值保载-疲劳(巡航)和上-下峰值保载-疲劳(巡航-休整)裂纹扩展速率试验研究。试验结果表明,钛合金上峰值保载-疲劳裂纹扩展速率高于疲劳裂纹扩展速率,并随着上峰保载时间的增加,上峰值保载-疲劳裂纹扩展速率越高;随着下峰值保载时间的引入,使得上-下峰值保载-疲劳裂纹扩展速率明显高于上峰值保载-疲劳裂纹扩展速率,并且裂纹扩展速率随着下峰值保载时间的增加而不断加快。
During the service of deep-ocean manned submersible, the pressure shell in each operation bears loads as follows: diving stage (load increase), cruising state (upper peak load holding), floating stage (load decrease), rest stage (lower peak load holding). Therefore, this paper carried out the experimental study on the influence of upper peak load holding (cruising state) and upper-lower peak load holding (cruise-rest state) on the fatigue crack growth tests of new titanium alloy. The results show that the dwell-fatigue crack growth life under upper peak load holding is faster than the fatigue crack growth life, and the dwell-fatigue crack growth life of under upper-lower peak load holding is faster than the dwell-fatigue crack growth life under upper peak load holding. With the increase of the lower peak load holding time, the dwell-fatigue crack growth rate also increases.
2022,44(14): 26-29 收稿日期:2021-03-06
DOI:10.3404/j.issn.1672-7649.2022.14.006
分类号:U663.1
基金项目:国家自然科学基金资助项目(51709134);国家重点研发计划项目(P2016YFC03007603-02);江苏省自然科学基金资助项目(BK20160559,BK20170575)
作者简介:王珂(1979-),女,副教授,主要从事船舶与海洋结构物制造力学研究
参考文献:
[1] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002.
[2] 赵羿羽, 曾晓光, 郎舒妍. 深海载人潜水器技术动向[J]. 中国船检, 2016(11): 94–97
[3] 李文跃, 王帅, 刘涛, 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210–221
[4] 王哲. 钛合金材料保载—疲劳裂纹扩展速率预报方法研究[D]. 镇江: 江苏科技大学, 2017.
[5] 卞超. 新型钛合金保载-疲劳裂纹扩展行为试验研究[D]. 镇江: 江苏科技大学, 2019.
[6] EVANS W J, GOSTELOW C R. The effect of hold time on the fatigue properties of a β-processed titanium alloy[J]. Metallurgical Transactions A, 1979, 10(12): 1837–1846
[7] EVANS W J, BACHE M R. Dwell-sensitive Fatigue under Biaxial loads in the near-alpha titanium alloy IMI685[J]. International Journal of Fatigue, 1994, 16(7): 443–452
[8] BACHE M R, COPE M, DAVIES H M, et al. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature[J]. International Journal of Fatigue, 1997, 19(93): 83–88
[9] WHITTAKER M T, EVANS W J, HARRISON W. Time Dependent Fatigue Fractures of Titanium Alloys[J]. Icf12 Ottawa, 2013, 32(4): 33–39
[10] 王珂, 王芳, 崔维成. 钛合金室温保载-疲劳裂纹扩展预报方法及其对 Ti-6242 的适应性研究[J]. 船舶力学, 2013, 17(11): 1309–1317
[11] 王珂, 谢晓波, 李永正, 等. 钛合金Ti-6Al-4V室温保载-疲劳寿命预报方法研究[J]. 中国造船, 2018, 59(02): 123–128
[12] MCEVILY A J. The growth of short fatigue cracks: a review[J]. Materials Science Research International, 1998, 4(1): 3–11
[13] SAVAGE M F, NEERAJ T, MILLS M J. Observations of room-temperature creep recovery in titanium alloys[J]. Metallurgical and Materials Transactions A, 2002, 33(3).