为了设计适用于高温高辐射恶劣条件下的中子屏蔽材料,综述纳米改性环氧树脂基材料屏蔽性能和耐高温性能的研究现状。结果表明,纳米填料可有效增强环氧树脂基复合材料的屏蔽性能和热力学性能。针对核动力舰船屏蔽材料轻质化、耐高温和高效中子屏蔽等要求,提出一种无机纳米颗粒协同增强环氧树脂基材料中子屏蔽和热力学性能的设计方案。
To design the neutron shielding materials suitable for high temperature and high radiation, the research analyzed the current of enhancing the shielding performance and high temperature resistance of epoxy resin by nanoparticles. The results show that the doping of nanoparticles can enhance the shielding performance and thermodynamic property of epoxy resin matrix composites. Aiming at the comprehensive requirements of lightweight, high temperature and high efficiency shielding materials for nuclear powered ships, a design scheme for the cooperative reinforcement of neutron shielding and thermodynamic performance of epoxy resin substrate by inorganic nanoparticles were presented.
2022,44(14): 35-39 收稿日期:2021-10-11
DOI:10.3404/j.issn.1672-7649.2022.14.008
分类号:TB333
基金项目:国家重点研发项目(2017YFC0307800)
作者简介:余明(1990-),男,工程师,主要从事核动力堆辐射屏蔽设计研究
参考文献:
[1] WANG P, TANG X, CHAI H, et al. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material[J]. Fusion Engineering Design, 2015, 101: 218–225.
[2] OKUNO K. Neutron shielding material based on colemanite and epoxy resin[J]. Radiat Protect Dosimetry. 2015, 115: 258–261.
[3] NAMBIAR S, YEOW J T W , Polymer-composite materials for radiation protection[J]. ACS Applied Materials Interfaces, 2012, 4(11): 5717–5726.
[4] CHILTON B , et al. Principles of radiation shielding[M]. Prentice-Hall, Inc, New Jersey, 1984.
[5] SOLTANI Z , BEIGZADEH A , ZIAIE F , et al. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: experimental and simulation studies[J]. Radiation Physics and Chemistry, 2016.
[6] TEKIN H O, SAYYED M I, ISSA S A M . Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code[J]. Radiation Physics and Chemistry, 2018: S0969806X18302536.
[7] JAEWOO K, DUCKBONG S, BYUNG C L, et al. Nano-W dispersed gamma radiation shielding materials[J]. Advanced Engineering Materials, 2014, 16(9).
[8] 张瑜, 戴耀东, 李江苏, 等. 聚丙烯酸铅/环氧树脂辐射防护材料的制备及性能研究[J]. 高分子学报, 2010, 5: 582–587
[9] ALI, K M, MOHAMMAD, K K, ATALLAH, F S. Calculation of radiation doses using shields for nanoparticles tungsten oxide WO3 mixed with epoxy[J]. Journal of Radiation and Nuclear Applications, 2018, 3(3): 191–197
[10] LI R, GU Y, WANG Y, et al. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite[J]. Materials Research Express, 2017.
[11] JAEWOO K, BYUNG C L, YOUNG R U, et al. Miller. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites[J]. Journal of Nuclear Materials, 2014, 453(1–3): 48–53
[12] OKTAY B, SERIFEG I, ABDULMOUNEM A W, et al. Polyimide nanocomposites in ternary structure: novel simultaneous neutron and gamma-ray shielding material[J]. Polymers for Advanced Technologies, 2020, 31(11): 2466–2479
[13] JI X L, JING J K, JIANG W, et al. Tensile modulus of polymer nanocomposites[J]. Polymer Engineering Science, 2002, 42(5): 983–993
[14] HSUEH CH. Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites[J]. Journal of America Ceramic Society, 1987(72): 344–347
[15] HUANG KS, NIEN JS, et al. Synthesis and properties of epoxy/TiO2 composite materials[J]. Polymer Composites, 2006, 27(2): 195–200
[16] KIM B, CHOI J, YANG S, et al. Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites[J]. Polymer, 2015, 60: 186–197
[17] 唐于京. 改性纳米SiO2对环氧树脂复合材料的热力学研究[D]. 重庆: 西南大学, 2020.