基于模块化设计思想,设计一种以桁架结构为主体并可搭载和输送水下机器人及辅助设备进行水下作业的载体结构。要求载体结构在伴随着风、浪、流等联合作用复杂多样的海洋环境中,不仅安全、稳定可靠而且结构简单实用且便于储藏。根据《海岸动力学》波浪调研报告,选取发生频率较高的二阶stokes波浪参数,利用Ansys基于边界造波法实现入口处波浪扰动,采用VOF计算方法实现自由液面的追踪并通过阻尼消波技术实现二阶stokes波浪数值模拟,完成波流作用下载体结构受力仿真分析。对载体结构的关键部位进行结构响应特性分析,采用Block Lanzcos法对整体结构进行模态分析,此外将波浪力时程施加于载体结构,进行结构瞬态动力分析,获得在未安装吸盘与安装吸盘时的位移和应力时程曲线并对曲线极值进行分析,验证水下机器人载体结构的稳定性和可靠性。
Based on the modular design idea, we design an underwater robot carrier structure with truss structure as the main body and can carry and transport underwater robots and auxiliary equipment for underwater operation. The carrier structure is required to be not only safe, stable and reliable but also simple and practical and easy to store in a complex and diverse marine environment with the combined effects of wind, waves and currents. According to the wave research report of Coastal Dynamics, the second order stokes wave parameters with high frequency are selected, the wave disturbance at the entrance is realized by Ansys based on the boundary wave making method, the free liquid surface is tracked by VOF calculation method and the second order stokes wave is numerically simulated by the damping wave elimination technique to complete the simulation analysis of the carrier structure under the action of wave current. In addition, the wave force is applied to the carrier structure and the transient dynamic analysis is carried out. The displacement and stress time curves are obtained when the suction cup is not installed and when the suction cup is installed, and the extreme values of the curves are analyzed to verify the stability and reliability of the carrier structure of the underwater robot. The stability and reliability of the underwater robot carrier structure are verified.
2022,44(14): 77-82 收稿日期:2021-06-20
DOI:10.3404/j.issn.1672-7649.2022.14.018
分类号:U663
作者简介:黄家宁(1992-),男,硕士,助教,研究方向为装备维修保障
参考文献:
[1] WALDEMAR K. Some considerations on an underwater robotic manipulator subjected to the environmental disturbances caused by water current. [J]. Acta Mechanica Et Automatica, 2016, 10(1): 43–49.
[2] GE Jian-jiang, DU Zeng-ji. The solitary wave solutions of the nonlinear perturbed shallow water wave model[J]. Applied Mathematics Letters, 2020, 103.
[3] 景信信. 浪-流联合作用对垂直轴水轮机水力性能的影响[D]. 西安: 西安理工大学, 2019.
[4] 张可心. 基于二阶造波方法确定性波浪的实验室模拟[D]. 大连: 大连理工大学, 2019.
[5] 田宏升. 固定式海洋结构物载荷分析与研究 [D]. 大连: 大连理工大学, 2005.
[6] 封星, 吴宛青, 吴文锋, 等. 二维数值波浪水槽在FLUENT中的实现[J]. 大连海事大学学报, 2010, 36(3): 94–96+101
[7] 韦承勋. 风—浪—流联合作用场数值模拟及其对圆柱构件的作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
[8] 郭晓宇. 数值波浪水槽及其应用研究 [D]. 上海: 上海交通大学, 2011.
[9] 范会渠. 波浪中大尺度立柱的势流理论分析与应用研究[D]. 北京: 中国舰船研究院, 2017.
[10] SIGNE S, HENRIK B, HARRY B B. The influence of fully nonlinear wave forces on aero-hydro-elastic calculations of monopile wind turbines[J]. Marine structure, 2016, 50: 162–188.
[11] SUNNY KUMAR P, VENDHAN C P, KRISHNANKUTTY P. Study of water wave diffraction around cylinders using a finite-element model of fully nonlinear potential flow theory[J]. Ship and Offshore Structures, 2017, 12(2): 276–289.
[12] 任森. 波浪效应下深水桥梁群桩基础结构形式研究[D]. 成都: 西南交通大学, 2018.
[13] 丁俊杰. 考虑波流相互作用的数值水槽及循环水槽消波装置开发研究[D]. 上海: 上海交通大学, 2019.
[14] MAGDALENA I, MARIAN P. ROQUE. Analytical and numerical solution for wave reflection from a porous wave absorber[C]// International Conference on Mathematics: Pure, Applied and Computation, 2018, 974(1).
[15] SCOTT J B, BRYCE B, KUSH B, et al. Experimental and numerical comparisons of self-reacting point absorber wave energy converters in irregular waves[J]. Oceon Engineering, 2019, 173: 716–731.
[16] JAN-TORE H H, JORGEN R K, JORGEN A. Hydro-elastic contributions to fatigue damage on a large monopile[J]. Energy Procedia, 2016, 94: 102–114.
[17] ISAACSON M, CHEUNG K F. Wave-current interaction with a large structure[J]. Oceans, 2015, 3(1): 66–80
[18] 骆成. 海洋立管动态响应及动态可靠度分析[D]. 兰州: 兰州理工大学, 2014.
[19] 路宽, 齐连明, 王鑫, 等. 不同湍流模型在波浪水槽数值模拟中的应用与比较[J]. 海洋通报, 2013, 32(6): 695–699
[20] 韦承勋. 风—浪—流联合作用场数值模拟及其对圆柱构件的作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.