针对异构多智能体的编队控制问题,本文提出一种基于事件触发的异构多智能体编队控制算法。基于无人机和无人船的数学模型,结合事件触发机制设计观测器,且在事件触发函数中引入采样机制,可自然排除Zeno现象。基于观测器的估计信息,设计异构多智能体分布式编队控制协议。该控制算法在保证无人机和无人船形成编队的同时,减少了无人机与无人船之间的通信次数,降低了系统的通信资源消耗。本文通过Lyapunov函数证明所提出的算法满足全局渐进稳定,且通过数值仿真实验验证算法的有效性。
Aiming at the formation control problem of heterogeneous multi-agents, this paper proposes an event-triggered formation control algorithm for heterogeneous multi-agents. First, based on the mathematical model of UAVs and unmanned ships, the observer is designed in combination with the event trigger mechanism, and the sampling mechanism is introduced into the event trigger function, which can naturally eliminate the Zeno phenomenon. Then, based on the estimated information of the observer, a distributed formation control protocol for heterogeneous multi-agents is designed. This control algorithm reduces the number of communications between the UAV and the UAV, and reduces the communication resource consumption of the system while ensuring that the UAV and the UAV form a formation. In this paper, the Lyapunov function proves that the proposed algorithm satisfies the global asymptotic stability, and the effectiveness of the algorithm is verified by numerical simulation experiments.
2022,44(14): 83-88 收稿日期:2021-09-06
DOI:10.3404/j.issn.1672-7649.2022.14.019
分类号:TP13
作者简介:邓志良(1962-),男,博士,教授,研究方向为智能控制
参考文献:
[1] LIU Z, ZHANG Y, YU X, et al. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71–93
[2] MA Y, HU M, YAN X. Multi-objective path planning for unmanned surface vehicle with currents effects[J]. Isa Transactions, 2018, 75: 137–156
[3] PENG Z, WANG J, WANG D, et al. An overview of recent advances in coordinated control of multiple autonomous surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2020(99): 1–1
[4] FU M Y, WANG D S, WANG C L. Formation control for water-jet USV based on bio-inspired method[J]. China Ocean Engineering, 2018, 32(01): 117–122
[5] SUN X, WANG G, FAN Y, et al. A formation collision avoidance system for unmanned surface vehicles with Leader-Follower Structure[J]. IEEE Access, 2019: 1
[6] 欧阳子路, 王鸿东, 黄一, 等. 基于改进RRT算法的无人艇编队路径规划技术[J]. 中国舰船研究, 2020(3): 18–24
[7] Zhou Y J, JIANG G P, XU F Y, et al. Distributed finite time consensus of second-order multi-agent systems via pinning control[J]. IEEE Access, 2018, 6: 45617–45624
[8] LIU Z Q , WANG Y L , WANG T B . Incremental predictive control-based output consensus of networked unmanned surface vehicle formation systems[J]. Information Sciences, 2018.
[9] DING L, HAN Q L, GE X, et al. An overview of recent advances in event-triggered consensus of multiagent systems[J]. IEEE Transactions on Cybernetics, 2018, 48(4): 1110–1123
[10] BIN C, ZHONGKUI L. Fully distributed event-triggered protocols for linear multi-agent networks[J]. IEEE Transactions on Automatic Control, 2018: 1–1
[11] WANG, R POSTOYAN, D. Nešić, et al. Periodic event-triggered control for nonlinear networked control systems[J]. IEEE Transactions on Automatic Control, 2020, 65(2), 620–635 .
[12] DIMAROGONAS D V, FRAZZOLI E, JOHANSSON K H. Distributed event-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2012, 57(5): 1291–1297
[13] 周绍磊, 赵学远, 王帅磊, 等. 基于事件触发的多智能体系统编队控制[J]. 兵器装备工程学报, 2019, 040(012): 85–89
[14] YU Mei, wang Hangfei, XIE Guangming, et al. Event-triggered circle formation control for second-order-agent system[J]. Neurocomputing, 2018, 275: 462–469
[15] YANG J, XIAO F, MA J. Model-based edge-event-triggered containment control under directed topologies[J]. IEEE Transactions on Cybernetics, 2018: 1–12
[16] LIU S , FEI Q , WU C , et al. Finite-time event-triggered attitude consensus control for multiple unmanned surface vessels[C]// Proceedings of 2019 Chinese Intelligent Automation Conference, 2020.