针对自主水下航行器(AUV)集群在协同分群时的状态不可控问题,提出一种基于蚁群算法的可控分群控制算法。参照基本蚁群算法,利用期望子群规模和AUV与群目标的距离,设计了自主就近分群策略。基于该策略设计了具有多个变速群目标的协同分群控制算法,使AUV集群产生子群数量、规模和速度均可控的分群行为。通过理论分析和仿真实验验证了所设计算法的有效性。结果表明,该算法能使AUV集群实现可控的分群行为,且分群过程中未过多打乱已稳定的邻居结构,加快了集群结构调整过程,减少了集群速度振荡。
For the uncontrollable state of subgroups in autonomous underwater vehicle (AUV) fission, a controllable fission control algorithm based on ant colony algorithm is proposed. Referring to the basic ant colony algorithm, the expected subgroups scale and the distance between AUV and group targets are used to design the autonomous nearest fission strategy. Based on this strategy, a cooperative fission control algorithm with multiple variable speed group targets is designed to make AUV swarm produce fission behavior with controllable number, scale and speed of subgroups. This algorithm effectiveness is verified by theoretical analysis and simulation experiments. The results show that this algorithm can make AUV swarm achieve controllable fission behavior, and doesn’t disturb the stable neighbor structure too much in fission process, so as to accelerate swarm structure adjustment process and reduce swarm speed oscillation.
2022,44(14): 95-99 收稿日期:2021-09-09
DOI:10.3404/j.issn.1672-7649.2022.14.021
分类号:TP24
基金项目:黑龙江省大学生创新创业项目(202110236011);黑龙江省省属高等学校基本科研业务费基础研究项目(KYYWF10236190202)
作者简介:李成凤(1986-),女,博士研究生,研究方向为多智能体协同控制
参考文献:
[1] 张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2019, 41(2): 289–297
[2] 曹少华, 张春晓, 王广洲, 等. 智能水下机器人的发展现状及在军事上的应用[J]. 船舶工程, 2019, 41(2): 79–84+89
[3] HADI B, KHOSRAVI A, SARHADI P. A Review of the path planning and formation control for multiple autonomous underwater vehicles[J/OL]. Journal of Intelligent & Robotic Systems, 2021, 1–67[2021-03-18].https://doi.org/10.1007/s10846-021-01330-4.
[4] 刘明雍, 杨盼盼, 雷小康, 等. 基于信息耦合度的群集式AUV分群控制算法[J]. 西北工业大学学报, 2014, 32(4): 581–585
[5] 杨盼盼, 刘明雍, 雷小康, 等. 群集系统分群行为建模与控制研究进展[J]. 控制与决策, 2016, 31(2): 193–206
[6] LIU Y, SLOTINE J, BARABÁsi A. Controllability of complex networks[J]. Nature, 2011, 473(7346): 167–173
[7] FAN M C, ZHANG H T, WANG M. Bipartite flocking for multi-agent systems[J]. Communications in Nonlinear Science & Numerical Simulation, 2014, 19(9): 3313–3322
[8] XIAO Q, LIU H, WANG X, et al. A note on the fixed-time bipartite flocking for nonlinear multi-agent systems[J]. Applied Mathematics Letters, 2020, 99: 105973
[9] YU J J, YU S H. An improved fixed-time bipartite flocking protocol for nonlinear multi-agent systems[J]. International Journal of Control, 2020(1): 1–6
[10] 杨盼盼, 张瑾琪, 刘家毓. 水声通信时延下集群式AUV分群控制算法[J]. 兵器装备工程学报, 2018, 39(12): 113–117
[11] YANG P P, LIU M Y, et al. A novel control algorithm for the self-organized fission behavior of flocking system with time delay[J]. International Journal of Control, Automation and Systems, 2016, 14(4): 986–997
[12] WEI H, CHEN X B. Flocking for multiple subgroups of multi-agents with different social distancing[J]. IEEE Access, 2020, 8: 164705–164716
[13] 王帅磊, 张金春, 曹彪, 等. 双类型多智能体蜂拥控制目标跟踪算法[J]. 控制工程, 2019, 26(5): 935–940
[14] 高振龙, 丁勇, 何金. 注意力跟随机制与IAP法相结合的多智能体运动控制[J]. 电光与控制, 2020, 27(3): 58–64
[15] LUO X Y, LI S B, GUAN X P. Flocking algorithm with multi-target tracking for multi-agent systems[J]. Pattern Recognition Letters, 2010, 31(9): 800–805
[16] 刘宗春, 田彦涛, 李成凤. 动态阻尼环境下多领导者群体机器人系统协同跟踪控制[J]. 机器人, 2011, 33(4): 385–393