以船舶串联式混合动力系统的能量管理策略为研究对象,建立动力系统数学模型,采用实时性好的基于逻辑规则的能量管理策略,提出基于多目标优化算法NSGA-II优化逻辑规则中的逻辑门限值,以降低油耗和碳排放。某内河运输船循环工况的仿真结果表明,比较传统动力系统,采用优化能量管理策略的混合动力系统节油11.09%,减少碳排放4.32%;比较基于经验的逻辑规则,优化的能量管理策略节油1.18%,减少碳排放2.46%。
Taking the energy management strategy of the ship series hybrid system as the research object, the mathematical model of hybrid system is established and the real-time energy management strategy based on logic rules is adopted. To reduce fuel consumption and carbon emissions, a multi-objective optimization algorithm based on NSGA-II is proposed to optimize logic thresholds in the logic rules. The simulation results of the cycle condition of an inland transport ship show that compared with the traditional power system, the hybrid system with optimized energy management strategy saves 11.09% fuel and reduces carbon emissions by 4.32%; compared with experience-based logic rules, the optimized energy management strategy saves fuel by 1.18% and reduces carbon emissions by 4.32%.
2022,44(14): 113-118 收稿日期:2021-09-20
DOI:10.3404/j.issn.1672-7649.2022.14.024
分类号:U664.81
基金项目:工信部高技术船舶科研资助项目(MC-201917-C09)
作者简介:苗东晓(1995-),男,硕士研究生,研究方向为混合动力系统控制与能量管理
参考文献:
[1] 范爱龙, 贺亚鹏, 严新平, 等. 智能新能源船舶的概念及关键技术[J]. 船舶工程, 2020, 42(3): 9–14
FAN Ailong, HE Yapeng, YAN Xinping, et al. Concept and key technologies of intelligent new energy ships[J]. Ship Engineering, 2020, 42(3): 9–14
[2] 王凯, 卢博闻, 李仁祥, 等. 船舶多清洁能源混合动力系统及其关键技术[J]. 舰船科学技术, 2020, 42(17): 6–11
WANG Kai, LU Bowen, LI Renxiang, et al. Research progress on multi-clean energy hybrid system and the key technologies of ships[J]. Ship Science and Technology, 2020, 42(17): 6–11
[3] 魏伟, 褚建新, 王帆. 串联式混合动力船舶能源系统运行模式切换策略[J]. 船舶工程. 2016, 38(4): 26–30.
WEI Wei, CHU Jianxin, WANG Fan. Operation mode switching strategy of series hybrid electric ship power system[J]. Ship Engineering, 2016, 38(4): 26–30.
[4] 范立云, 张恒熙, 徐超, 等. 并联式船舶混合动力系统参数匹配与能量管理[J]. 船舶工程, 2021, 43(4): 60–65
FAN Liyun, ZHANG Hengxi, XU Chao, et al. Parameter matching and energy management of parallel marine hybrid power system[J]. Ship Engineering, 2021, 43(4): 60–65
[5] KANELLOS F D. Optimal power management with GHG emissions limitation in all-electric ship power systems comprising energy storage systems[J]. IEEE Transactions on Power Systems, 2014, 29(1): 330–339
[6] TRUONG Q D, TRUONG M N B, JAMES M, et al. Optimal Energy Management for Hybrid electric dynamic positioning vessels[J]. IFAC-PapersOnLine, 2018, 51(29): 98–103
[7] NIKOLAOS P, GEORGE P, NIKOLAOS K. Predictive power-split system of hybrid ship propulsion for energy management and emissions reduction[J]. Control Engineering Practice, 2021: 111
[8] 潘钊, 商蕾, 高海波, 等. 燃料电池混合动力船舶复合储能系统与能量管理策略优化[J]. 大连海事大学学报, 2021, 7(3): 79–85
PAN Zhao, SHANG Lei, GAO Haibo, et al. Optimization of composite energy storage system and energy management strategy for fuel cell ships[J]. Journal of Dalian Maritime University, 2021, 7(3): 79–85
[9] 张程, 贾宝柱, 邹佳奇. 基于多目标遗传算法的柴电混合动力船舶功率分配优化[J]. 计算机应用与软件, 2021, 38(3): 26–31
ZHANG Cheng, JIA Baozhu, ZOU Jiaqi. Power distribution optimization of diesel-electric hybrid ship based on multi-objective genetic algorithm[J]. Computer Applications and Software, 2021, 38(3): 26–31
[10] JOHNSON V H. Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 110(2): 321–329
[11] XU Liangfei, MUELLER C D, LI Jianqiu, et al. Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles[J]. Applied Energy, 2015, 157: 664–674
[12] 徐爽. 船舶混合动力系统能量管理仿真研究[D]. 大连:大连理工大学, 2021.
[13] 盛振邦, 刘应中. 船舶原理[M]. 上海: 上海交通大学出版社, 2004.
[14] ZHU Jianyun, CHEN Li, XIA Lijuan, et al. Bi-objective optimal design of plug-in hybrid electric propulsion system for ships[J]. Energy, 2019, 177: 247–261
[15] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation. 2002, 6(2): 182–197.