本文开展较高Re数下圆柱的涡激振动特性研究,以水为介质,基于Fine/Marine求解器,实现圆柱涡激振动现象的水动力及刚体运动的数值耦合求解,得到了4个质量比下的圆柱振幅趋势曲线。结果表明,选用的4个质量比对振幅变化趋势的影响较小。同时,对所得曲线中的不同分支进行分析,并对比现有低Re数下的研究结果,表明振幅趋势曲线在较低折合速度下出现了一个新的分支,其尾涡结构表现为2P模式,称为“左分支”;在较高折合速度下,上分支得到延伸,但相比原上分支,尾涡结构发生了明显的变化。
The vortex-induced vibration of a cylinder at high Reynolds numbers is studied. Based on Fine/Marine solver, the numerical coupling solution of hydrodynamic force and rigid body motion of cylindrical vortex-induced vibration is achieved. The results show that the four mass ratios have little influence on the amplitude trend. At the same time, the different branches of the cylindrical amplitude trend curve are analyzed and compared with the existing results under low Reynolds number. It is shown that a new branch appears at lower reduced velocities, and its wake vortex structure is 2P mode, called the left branch. At higher reduced velocities, the upper branch is extended, but compared with the original upper branch, the wake vortex structure changes obviously.
2022,44(15): 32-36 收稿日期:2022-03-08
DOI:10.3404/j.issn.1672-7649.2022.15.007
分类号:P751
作者简介:周军伟(1981-),男,博士,副教授,研究方向为叶轮机械流动控制及方法,水下噪声及水动力降噪方法
参考文献:
[1] LAI Zhihui, et al. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting[J]. Mechanical Systems and Signal Processing, 2021, 150: 107212
[2] WANG Shuyun, et al. Development of a novel non-contact piezoelectric wind energy harvester excited by vortex-induced vibration[J]. Energy Conversion and Management, 2021: 235
[3] BERNITSAS MICHAEL M. et al. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(4).
[4] BERNITSAS MICHAEL M. et al. The VIVACE converter: model tests at high damping and Reynolds number around 105[J]. Journal of Offshore Mechanics and Arctic Engineering, 2009, 131(1)
[5] STAPPENBELT B , JOHNSTONE A D , ANGER J . Vortex-induced vibration marine current energy harvesting[J]. Springer Berlin Heidelberg, 2016.
[6] WILLIAMSON C, GOVARDHAN R. Vortex-induced vibrations. Annual Review of Fluid Mechanics, 2004. 36(1): 413-455.
[7] 及春宁, 李非凡, 陈威霖, 等. 圆柱涡激振动研究进展与展望[J]. 海洋技术学报, 2015, 34(1): 106–118
[8] RAGHAVAN K, BERNITSAS M M. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[J]. Ocean Engineering, 2011, 38(5/6): 719–731
[9] CHANG C, KUMAR R A, BERNITSAS M M. VIV and galloping of single circular cylinder with surface roughness at 3.0×104≤ Re≤1.2×105[J]. Ocean Engineering, 2011, 38(16): 1713–1732
[10] LIN Ding, et al. Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control[J]. Renewable Energy, 2016, 85: 1246–1259
[11] ZHU Hongjun, GAO Yue. Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips[J]. Energy, 2018, 165: 1259–1281