针对尾轴承的均载及减振设计需要,提出具有自适应性能的新型水润滑尾轴承结构。该轴承主要由轴瓦、弹性元件和阻尼合金3部分构成。弹性元件用于实现尾轴承的静态与动态均载,减少尾轴承的边缘效应,使其接触压力沿轴向分布均匀,提高轴承的使用寿命和降低轴承的摩擦激励;阻尼合金用于衰减轴系振动经轴承向基础的振动传递,实现振动的传递特性优化。通过对尾轴承的振动特性进行分析,结果表明推进器激励至轴承节点处的振动传递特性得到优化,一阶固频处的振动响应降幅明显。另外,适度提高基础支撑刚度也可降低轴承的振动响应。
According to the design requirements of load equalization and vibration reduction for the stern bearing, a water-lubricated stern bearing with self-adaptation capacity is proposed. The bearing is mainly composed of three parts: the bearing bush, the elastic element and the damping alloy. The elastic element is used to realize static and dynamic load sharing of the stern bearing, reduce the edge effect of the stern bearing, and make the contact pressure evenly distributed in the axial direction, thereby improving the service life of the bearing and reducing the frictional excitation of the bearing. Damping alloy is used to attenuate the shaft vibration transmission from the bearing to the foundation, so as to optimize the vibration transmission characteristics. By analyzing the vibration characteristics of the stern bearing, the results show that the vibration transmission characteristics of the thruster excited to the bearing node are optimized, and the vibration response at the first-order fixed frequency is significantly reduced; in addition, a moderate increase in the support stiffness of the foundation can also reduce the vibration response of the bearing.
2022,44(15): 66-70 收稿日期:2022-04-19
DOI:10.3404/j.issn.1672-7649.2022.15.014
分类号:TH133
基金项目:国家自然科学基金资助项目(52006156)
作者简介:马俊(1979-),男,硕士,工程师,研究方向为舰船推进系统振动控制与转子动力学特性优化
参考文献:
[1] CHERTOCK G. Forces on a submarine hull induced by the propeller[R]. David Taylor Model Basin Washington DC Acoustics and Vibration Lab, 1965.
[2] 姚世卫, 杨俊, 张雪冰, 等. 水润滑橡胶轴承振动噪声激励分析与试验研究[J]. 振动与冲击, 2011, 30(2): 214–216
[3] QIN Hong-lin, ZHOU Xin-cong, ZHAO Xin-ze, et al. A new rubber/UHMWPE alloy for water-Lubricated stern bearing[J]. Wear, 2015, 328/329: 257–261
[4] DONG Cong-lin, SHI Li-Chun, LI Lyu-zhou, et al. Stick-slip behaviours of water lubrication polymer meterials under low speed conditions[J]. Tribology International, 2017, 103: 55–61
[5] ZHANG Zhen-guo, ZHANG Zhi-yi, HUANG Xiu-chang, et al. Stability and transient dynamics induced by nonlinear friction action on bearing-shaft contact interface[J]. Journal of Sound and Vibration, 2014, 333(12): 2608–2630
[6] 欧阳武, 程启超, 王磊, 等. 偏载下水润滑尾轴承分布式动力学特性[J]. 交通运输工程学报, 2019, 19(2): 92–100
[7] 周瑞平. 超大型船舶推进轴系校中理论研究[D]. 武汉: 武汉理工大学, 2005.
[8] 蒋平, 朱汉华, 严新平, 等. 船体大变形对轴系校中的影响[J]. 船舶工程, 2013(1): 35–38
[9] 李泽远, 汪骥, 刘玉君. 考虑船体变形的轴系动态校中算法[J]. 船舶工程, 2018, 40(10): 59–63
[10] QIU Z. L. A theoretical and experimental study on dynamic characteristics of journal bearings [D]. PhD thesis. University of Wollongong, Wollongong, 1995.
[11] 王攀. 超高速磨削电主轴液体动静压轴承动力学问题研究[D]. 洛阳: 河南工业大学, 2018.
[12] HE Zhen-peng, ZHANG Jun-hong, XIE Wei-song, et al. Misalignment analysis of journal bearing influenced by asymmetric deflection, based on a simple stepped shaft model[J]. Journal of Zhejiang University - Science A (Applied Physics & Engineering). 2012, 13(9): 647-664.