以大型浮筏隔振装置筏架为研究对象,提出一种基于模态转换方法的筏架表面重构算法。建立浮筏筏架有限元模型,确定传感器布局策略,利用少量应变数据重构结构位移曲面,通过基于模态方法的形状重构算法,建立应变-位移转换方程,将离散应变场转换为整体位移场。对浮筏模型截断模态及测点选取进行分析,确定了截断模态及测点选取策略。结果表明选取适当的截断模态数量及测点布置位置具有更高效的重构效果,可有效应用于大型筏架结构变形的监测。
Taking the large-scale floating raft as the research object, a raft surface reconstruction algorithm based on the modal conversion method is proposed. First, the establishment of a floating raft finite element model to determine the sensor placement strategies. Secondly, it shows how to use a small amount of strain data to reconstruct the structure displacement surface method. Through the shape reconstruction algorithm based on the modal method, the strain-displacement conversion equation is established to convert the discrete strain field into the overall displacement field. Finally, the truncated mode and measurement point selection of the floating raft model are analyzed, and the truncation mode and measurement point selection strategy are determined. The results show that selecting the appropriate number of truncated modes and the placement of measuring points has a more efficient reconstruction effect, which can be effectively applied to the monitoring of large-scale raft structure deformation
2022,44(15): 75-79 收稿日期:2021-06-22
DOI:10.3404/j.issn.1672-7649.2022.15.016
分类号:U661.44
基金项目:国防重点实验室基金资助项目(6142204190604)
作者简介:程光辉(1997-),男,硕士研究生,研究方向为振动与噪声控制
参考文献:
[1] 吕志强, 施 亮, 赵应龙. 气囊浮筏隔振装置姿态控制问题[J]. 噪声与振动控制, 2013(1): 40–44
LV Zhi-qiang, SHI Liang, ZHAO Ying-long. Attitude control of air spring raft isolation system[J]. Noise and Vibration Control, 2013(1): 40–44
[2] 秦文政, 施亮. 浮筏气囊隔振系统弹性变形控制研究[J]. 舰船科学技术, 2020, 42(17): 67–70
QIN Wen-zheng, SHI Liang. Research on elastic deformation control of air spring raft isolation system[J]. Ship Science and Technology, 2020, 42(17): 67–70
[3] ZHANG Yang, LIU Peng, ZHAO Xue-feng. Structural displacement monitoring based on mask regions with convolutional neural network[J]. Construction and Building Materials, 2020.
[4] 朱晓锦, 陆美玉, 樊红朝, 等. 光纤光栅机敏结构振动形态感知与重构试验研究[J]. 仪器仪表学报, 2009, 30(1): 65–70
[5] HAO Xu, et al. Reconstruction of full-field complex deformed shapes of thin-walled special-section beam structures based on in situ strain measurement[J]. Advances in Structural Engineering, 2020, 23(15): 3335–3350
[6] 冯荻. 基于光纤光栅应变传感的结构变形重构技术研究[D]. 大连: 大连理工大学, 2020.
[7] LI Li, ZHONG Ben-shan, LI Wu-qian, et al. Structural shape reconstruction of fiber Bragg grating flexible plate based on strain modes using finite element method[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(4).
[8] 袁慎芳, 闫美佳, 张巾巾, 等. 一种适用于梁式机翼的变形重构方法[J]. 南京航空航天大学学报, 2014, 46(6): 825–830
[9] LIU Ming-yao, ZHANG Xiong, SONG Han, et al. Inverse finite element method for reconstruction of deformation in the gantry structure of heavy-duty machine tool using FBG sensors[J]. Sensors, 2018, 18(7).
[10] ZHANG He-sheng, ZHU Xiao-jin, GAO Zhi-yuan, et al. Fiber bragg grating plate structure shape reconstruction algorithm based on orthogonal curve net[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(17).
[11] 杨坤, 李强. 基于模态转换算法的结构变形监测的关键技术研究[J]. 科技信息, 2011(24): 726+728
[12] BANG Hyung-Joon, KIM Hong-Il, LEE Kang-Su. Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(12).