海洋测绘中无人艇平台的应用愈加广泛和必要,本文以一种尺度较小、搬运方便的充气浮筒式测量无人艇为例,对其水动力特性进行了分析预报。采用RANS(SST k-ω)方法求解控制方程,建立了无人艇及周围流场的三维模型并划分网格。数值模拟结果显示,无人艇在航速11 kn时航行稳定性优于航速5 kn时,高速航行时可保证船体平衡。8 kn航速时无人艇阻力较小,是较经济的航速。研究结果可为无人艇作业水域的选择和航行路线规划提供指导,并用于进一步提高无人艇航行平滑性和续航力的研究。
Unmanned vehicles are widely used in marine survey and mapping, which is essential to study it in the future. The hydrodynamics of a small scale and easy-handle unmanned vehicle with inflatable hull was calculated as an example. The governing equations were solved by RANS (Standard k-ε), the three-dimensional model of the vehicle and flow field around it have been built, and the mesh was set up. It was found that this unmanned vehicle performances a better stability when its velocity is 11 kn than 5 kn, thus the balance of the hull can be guaranteed when it is in high speed. The economical velocity is 8 kn as the resistance is smaller in this speed. The results of this study can be used to direct the selecting of the working area and planning of the navigating path of the unmanned vehicles, applied in proving the smooth and endurance of the navigation as well.
2022,44(15): 86-91 收稿日期:2022-04-06
DOI:10.3404/j.issn.1672-7649.2022.15.018
分类号:U662.2
作者简介:李忠(1970-),男,高级工程师,研究方向为海洋结构物设计、航政管理
参考文献:
[1] 燕聃聃. 基于吊舱推进的小型水面无人艇航迹控制研究[D]. 武汉: 武汉理工大学, 2017.
[2] CAMPBELL S, NAEEM W, IRWIN G W. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres[J]. Annual Reviews in Control, 2012, 36(2): 267–283
[3] MCCUE L. Handbook of Marine Craft Hydrodynamics and Motion Control[J]. IEEE control systems, 2016, 36(1): 78–79
[4] 王保明. 一种水面无人艇艇型概念设计及综合性能优化分析[D]. 镇江: 江苏科技大学, 2014.
[5] 霍聪, 董文才. 潜伏式高速无人船型变航态航行试验[J]. 上海交通大学学报, 2016, 50(8): 1180–1185
[6] 魏成柱, 李英辉, 易宏. 穿浪船船型及相关研究综述[J]. 中国舰船研究, 2016, 11(5): 1–8
[7] 陶文冬. 英国长航时无人水面艇C-Enduro投入科研任务[EB/OL]. http://tech.huanqiu.com/news/2015-08/7330746.html?agt=15438, 2015.
[8] CACCIA M, BIBULI M, BONO R, et al. Charlie, A testbed for USV research[C]. Proceedings of the 8th International IFAC Conference on Manoeuvring and Control of Marine Craft, Guaruja(SP), Brazil: IFAC Secretariat, 2009: 97-102.
[9] NAEEM W, IRWIN G W, YANG A. COLREGs-based collision avoidance strategies for unmaned surface vehicles[J]. Mechatronics, 2012, 22(6): 669–678
[10] MAJOHR J, BUCH T. Modelling, simulation and control of an autonomous surface marine vehicle for surveying applications measuring dolphin MESSIN[M]. Advances in Unmanned Marine Vehicles. UK: The Institution of Electrical Engineers. 2006.
[11] MATINS A, ALMEIDA J M, FERREIRA H, et al. Autonomous surface vehicle docking manoeuvre with visual information[C]. Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy: IEEE, 2007: 4994-4999.
[12] 杨显原, 吴家鸣, 李林华. 基于最小阻力的双体无人船优化设计[J]. 舰船科学技术, 2018(15): 5
[13] QIAN P, YI H, LI Y. Numerical and experimental studies on hydrodynamic performance of a small-waterplane- area-twin-hull (SWATH) vehicle with inclined struts[J]. Ocean Engineering, 2015, 96: 181–191
[14] 郭春雨, 阙梓, 赵大鹏, 等. 计及船体姿态变化的水池阻塞效应数值研究[J]. 哈尔滨工程大学学报, 2016(12): 1619–1624
[15] LEE T, et al. Energy efficient path planning for a marine surface vehicle considering heading angle[J]. Ocean Engineering, 2015, 107: 118–131
[16] MA Y, M Hu, X Yan. Multi-objective path planning for unmanned surface vehicle with currents effects[J]. ISA Transactions, 2018, 75: 137–156