非直线型浮式防波堤相较于直线型布置,其对多浪向的掩护效果更佳,但波浪载荷特性也更加复杂。本文提出一种弧型布局的浮式防波堤布置方案,基于三维势流理论对其进行波浪载荷特性分析,计算不同浪向下的一阶波浪力和二阶波浪力,给出了典型剖面载荷。并与直线型布局浮式防波堤进行对比分析。结果表明采用弧型布局能够有效降低浮式防波堤结构一阶波浪力与二阶波浪力,并且使得结构在斜浪下的剖面载荷与横浪工况下趋于一致。
Compared with the linear arrangement, the non-linear floating breakwater has a better shielding effect on multiple wave directions, but the wave load characteristics are also more complicated. This paper proposes an arc-shaped floating breakwater layout plan. Based on the three-dimensional potential flow theory, the wave load characteristics of the arc-shaped floating breakwater are analyzed, the first-order wave force and the second-order wave force of different wave downwards are calculated, and the typical section loads are given. Compared with the linear layout of the floating breakwater, the results show that the use of the arc layout can effectively reduce the first-order wave force and the second-order wave force on the floating breakwater structure, and make the section loads of the structure consistent under different waves.
2022,44(15): 92-99 收稿日期:2021-04-14
DOI:10.3404/j.issn.1672-7649.2022.15.019
分类号:U656.2
基金项目:国家自然科学基金资助项目(51861130358)
作者简介:毛向前(1996-),男,硕士研究生,研究方向为船舶与海洋结构物水动力性能与强度
参考文献:
[1] JI C Y , CHEN X , CUI J , et al. Experimental study on configuration optimization of floating breakwaters[J]. Ocean Engineering, 2016, 117(may 1): 302-310.
[2] WANG Na, XING L , GANG W , et al. Stress analysis of anchor chain on the floating breakwater structure with cage culture function[J]. IOP Conference Series: Earth and Environmental Science, 2020, 567(1): 012008 (7pp).
[3] 卞向前. 新型水轮机式浮式防波堤设计与分析[D]. 镇江: 江苏科技大学, 2019.
[4] 曹剑锋, 李良碧, 顾海英, 等. 基于Ansys/AQWA的极大型浮式结构总体强度分析[J]. 舰船科学技术, 2015, 37(9): 30–34+39
CAO Jian-feng, LI Liang-bi, GU Hai-ying, et al. The global strength analysis of VLFS based on Ansys/AQWA[J]. Ship Science and Technology, 2015, 37(9): 30–34+39
[5] 刘海霞, 肖熙. 半潜式平台结构强度分析中的波浪载荷计算[J]. 中国海洋平台, 2003(02): 3–6
LIU Hai-xia, XIAO Xi. The wave load calculation in the analysis of structural strength of a semi-submersible[J]. China Offshore Platform, 2003(02): 3–6
[6] 王言英, 李芳. 浮式结构物在波浪中的运动响应计算[J]. 水动力学研究与进展(A辑), 1995(6): 571–580
[7] 夏风, 黄东, 滕洪园, 等. 船体结构强度评估的线性设计波法研究[J]. 舰船科学技术, 2019, 41(7): 34–38
XIA Feng, HUANG Dong, TENG Hong-yuan, et al. Research on linear design wave method of structure strength evaluating of hull[J]. Ship Science and Technology, 2019, 41(7): 34–38
[8] DAYUN, RIGGS H R, ERTEKIN R C. Three-dimensional hydroelastic response of a very large floating structure[J]. International Journal of Offshore and Polar Engineering, 1991, 1(4): 307–316
[9] 刘超. 超大型浮体多模块柔性连接结构响应研究[D]. 北京: 中国舰船研究院, 2014.
[10] 朱仁庆, 杨松林, 王志东. 船舶流体力学[M]. 北京: 国防工业出版社, 2015.
[11] FALTINSEN O M. 船舶与海洋工程环境载荷(第二版)[M]. 上海: 上海交通大学出版社, 2013.
[12] 徐胜. 半潜式平台运动耦合分析方法及水动力模型试验研究[D]. 镇江: 江苏科技大学, 2012.
[13] 王松波. 六边围圈型浮式平台连接器载荷特性及结构响应研究[D]. 武汉: 武汉理工大学, 2019.
[14] JI C Y, CHENG Y, YANG K, et al. Numerical and experimental investigation of hydrodynamic performance of a cylindrical dual pontoon-net floating breakwater[J]. Coastal Engineering, 2017, 129: 1–16
[15] 杨田祥. 通用抗流动力浮标平台运动特性及阻力研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.