为了从轴承座振动中提取船舶轴系不对中故障特征,提出基于随机共振和谐波小波包的振动信号检测与提取方法。在船舶轴系实验台上,进行船舶轴系校中实验,提取实验过程中轴承座振动信号中轴系不对中故障信号,并分析其随校中状态的变化。结果表明在直线校中状态下,轴承座振动中存在2倍频不对中振动响应;当轴系不对中状态随着尾前轴承标高增加逐渐恶化时,提取的特征振动的幅值逐渐增大。因此,基于随机共振和谐波小波包可实现从轴承座振动中提取船舶轴系不对中故障特征。
In order to extract the misalignment fault characteristics of ship shafting from the vibration of bearing seating, a detection and extraction method based on stochastic resonance and harmonic wavelet packet was proposed. The alignment experiments were carried out on the ship shafting test bench, the shafting misalignment fault signal was detected and extracted from the collected bearing seating vibration, and the law of the misalignment fault signal with the alignment state was analyzed. The results show that the misalignment vibration response of double frequency exists in the bearing seating vibration under the straight alignment state. As the elevation of the stern bearing increases, the misalignment of the shafting gradually deteriorates, and the amplitude of the extracted characteristic vibration gradually increases. Therefore, based on stochastic resonance and harmonic wavelet packet, the misalignment fault features of ship shafting can be extracted from the vibration of bearing seating.
2022,44(15): 113-118 收稿日期:2021-09-14
DOI:10.3404/j.issn.1672-7649.2022.15.023
分类号:U664.2
基金项目:国家自然科学基金面上项目(51879020);中央高校基本科研业务费(3132020189);大连海事大学博士研究生创新项目(BSCXXM006)
作者简介:邱世浩(1993-),男,硕士研究生,研究方向为振动测试与信号处理
参考文献:
[1] 毛海波. 大船集团VLOC轴系质量管理研究[D]. 大连: 大连理工大学, 2015.
[2] 杨俊, 王隽, 王刚伟. 船舶推进轴系校中对轴系振动影响分析[J]. 动力学与控制学报, 2016, 14(2): 157–164
Yang Jun, Wang Jun, Wang Gang-wei. Analysis of the influence of ship propulsion shafting alignment on shafting vibration[J]. Dynamics and Control, 2016, 14(2): 157–164
[3] 杨一舟, 蒋东翔. 概率神经网络用于机匣振动故障诊断[J]. 机械科学与技术, 2016, 35(12): 1805–1810
Yang Yi-zhou, Jiang Dong-xiang. Application of probabilistic neural network to case vibration fault diagnosis[J]. Mechanical Science and Technology, 2016, 35(12): 1805–1810
[4] BENZI R SUTERA A. The mechanism of stochastic resonance[J]. Journal of Physics A:Mathematical and General, 1981, 14(11): 447–453
[5] 田晶, 周杰, 王术光, 等. 基于自适应双稳态随机共振的中介轴承故障诊断方法[J]. 航空动力学报, 2019, 34(10): 162–170
Tian Jing, Zhou Jie, Wang Shu-guang, et al. Intermediate bearing fault diagnosis method based on adaptive bistable stochastic resonance[J]. Journal of Aeronautics and Dynamics, 2019, 34(10): 162–170
[6] 谢有浩, 刘晓乐, 刘后广, 等. 基于改进移频变尺度随机共振的齿轮故障诊断[J]. 农业工程学报, 2016, 32(8): 70–76
Xie You-hao, Liu Xiao-le, Liu Hou-guang, et al. Gear fault diagnosis based on improved frequency-shifted variable-scale stochastic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 70–76
[7] 富志凯, 邢建春, 王双庆, 等. 一种舰船辐射噪声线谱检测新方法[J]. 舰船科学技术, 2013, 35(12): 37–41
Fu Zhi-kai, Xing Jian-chun, Wang Shuang-qing, et al. A new method for detecting ship radiated noise line spectrum[J]. Ship Science and Technology, 2013, 35(12): 37–41
[8] TAO X, PEI A, YONG L. Discrimination the roller bearing faults with harmonic wavelet package, kernel principal component analysis and relevance vector machine[J]. Sensors & Transducers, 2014, 179(9).
[9] 田福庆, 罗荣. 改进的谐波小波包变换及其在弱故障特征提取中的应用[J]. 振动与冲击, 2013, 32(17): 29–34
Tian Fu-qing, Luo Rong. Improved harmonic wavelet packet transform and its application in weak fault feature extraction[J]. Journal of Vibration and Shock, 2013, 32(17): 29–34
[10] KENNEDY J, EBERHART R. Particle swarm optimization[C]//. Perth, Aust: IEEE, 1995.
[11] 冷永刚, 王太勇, 郭焱. 二次采样用于随机共振从强噪声中提取弱信号的数值研究[J]. 物理学报, 2003, 52(10): 2432–2437
Leng Yong-gang, Wang Tai-yong, Guo Yan. Numerical study of sub-sampling used for stochastic resonance to extract weak signals from strong noises[J]. Acta Phys. Sin., 2003, 52(10): 2432–2437
[12] YAN R, GAO R X. An Efficient approach to machine health diagnosis based on harmonic wavelet packet transform[J]. Robotics and Computer integrated Manufacturing, 2005, 21(4–5): 291–301
[13] 冷永刚, 王太勇, 郭焱, 等. 二次采样随机共振的工程应用研究[J]. 中国机械工程, 2004, 15(20): 1847–1852
Leng Yong-gang, Wang Tai-yong, Guo Yan, et al. Engineering application research of secondary sampling stochastic resonance[J]. China Mechanical Engineering, 2004, 15(20): 1847–1852