提出基于模糊层次分析的舰船故障数据定位挖掘算法,以解决舰船故障数据定位挖掘问题。使用基于模糊层次分析的舰船系统状态量化方法,诊断舰船系统故障状态后,通过基于主元分析方法的故障数据降维方法,将故障数据以降维的模式约束在同一维度中,提高故障数据可操行性。将降维后舰船故障数据,输入深度学习网络实现故障数据类型识别,从而完成故障数据定位挖掘。实验结果显示,所提算法应用后,降维后舰船故障数据维度一致,舰船故障状态识别准确,且故障数据定位挖掘结果符合实际,满足舰船系统运维需求,可用于舰船故障数据定位挖掘任务中。
An algorithm of ship fault data location and mining based on fuzzy analytic hierarchy process is proposed to solve the problem of ship fault data location and mining. After the fault state of the ship system is diagnosed by using the quantitative method of the ship system state based on fuzzy analytic hierarchy process, the dimension of the fault data is constrained in the same dimension by the dimension reduction method of the fault data based on the principal component analysis method, so as to improve the operability of the fault data. After the dimensionality reduction, the ship fault data is input into the deep learning network to realize the fault data type identification, so as to complete the fault data location mining. The experimental results show that after the application of the proposed algorithm, the dimensions of ship fault data are consistent after dimensionality reduction, the recognition of ship fault state is accurate, and the fault data location mining results are in line with the reality. The application performance can meet the needs of ship system operation and maintenance, and can be used in the task of ship fault data location mining.
2022,44(15): 149-152 收稿日期:2022-03-10
DOI:10.3404/j.issn.1672-7649.2022.15.031
分类号:TP621.3
作者简介:李川(1982-),男,博士研究生,高级实验师,主要研究方向为复杂网络及数据挖掘
参考文献:
[1] 苏文明, 柴凯. 基于VMD和RBF的舰船管路泄漏识别和定位[J]. 船舶工程, 2020, 42(10): 105–112
SU Wen-ming, CHAI Kai. Warship Pipeline Leakage Identification and Location Based on VMD and RBF[J]. Ship Engineering, 2020, 42(10): 105–112
[2] 邹永久, 杜太利, 姜兴家, 等. 基于AEC模型的船舶燃油供给系统状态评估[J]. 中国舰船研究, 2021, 16(1): 175–180
ZOU Yong-jiu, DU Tai-li, JIANG Xing-jia, et al. Evaluation of marine fuel supply system state based on AEC model[J]. Chinese Journal of Ship Research, 2021, 16(1): 175–180
[3] 仲国强, 贾宝柱, 肖峰, 等. 基于深度信念网络的船舶柴油机智能故障诊断[J]. 中国舰船研究, 2020, 15(3): 136–142+184
ZHONG Guo-qiang, JIA Bao-zhu, XIAO Feng, et al. Intelligent fault diagnosis of marine diesel engine based on deep belief network[J]. Chinese Journal of Ship Research, 2020, 15(3): 136–142+184
[4] 李军, 刘杰, 杨梓辉. 基于三角模糊层次分析法的高原库区施工船舶安全预警系统的设计[J]. 上海海事大学学报, 2021, 42(1): 94–99+106
[5] 边荣正, 张鉴, 周亮, 等. 面向复杂多流形高维数据的t-SNE降维方法[J]. 计算机辅助设计与图形学学报, 2021, 33(11): 1746–1754
[6] 常书源, 赵荣珍, 陈博, 等. 基于边界判别多流形分析的故障数据集降维方法[J]. 振动与冲击, 2021, 40(23): 120–126
[7] 魏世超, 李歆, 张宜弛, 等. 基于E-t-SNE的混合属性数据降维可视化方法[J]. 计算机工程与应用, 2020, 56(6): 66–72
[8] 江粼, 房小兆, 滕少华. 基于全局-局部保持投影的稀疏降维方法[J]. 江西师范大学学报(自然科学版), 2021, 45(1): 46–54
[9] 李海林, 梁叶. 基于关键形态特征的多元时间序列降维方法[J]. 控制与决策, 2020, 35(3): 629–636
[10] 刘文博, 梁盛楠, 余泉, 等. 基于伪F统计量的属性特征降维方法研究[J]. 东北师大学报(自然科学版), 2020, 52(1): 43–49
[11] 姜帅全, 朱志宇. 基于单频法的船舶电网绝缘监测与故障定位系统[J]. 船舶工程, 2021, 43(2): 95–102+157
[12] 陶珩, 魏海峰, 张懿, 等. 环网-辐射形船舶混合配电网络的Levy风驱动故障定位[J]. 江苏科技大学学报(自然科学版), 2020, 34(1): 54–61
TAO Heng, WEI Hai-feng, ZHANG Yi, et al. Levy wind drive fault diagnosis of ring network-radial ship hybrid distribution network[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(1): 54–61