为在水体浑浊度的影响下,还原水下拍摄场景的真实颜色信息,研究考虑浑浊度的水下无人航行器采集图像色彩误差校正方法。分析水下无人航行器采集图像的工作原理,依据该原理在不同浑浊度水体下,利用水下无人航行器完成图像采集,并使用直方图均衡化方法增强采集的图像,在此基础上运用改进灰度世界算法,实现增强图像的色彩误差校正。实验结果表明:该方法使用后的极限浑浊度图像的像素灰度级分布十分均匀,图像质量明显改善;水体浑浊度与采集图像的色彩误差具有正比关系,且该方法对不同水体浑浊度下的采集图像,均具有较优异的色彩误差校正效果。
In order to restore the true color information of underwater shooting scene under the influence of water turbidity, the color error correction method of Underwater Unmanned Aerial Vehicle image acquisition considering turbidity is studied. This paper analyzes the working principle of image acquisition by Underwater Unmanned Aerial Vehicle. According to this principle, underwater unmanned aerial vehicle is used to complete image acquisition in water with different turbidity, and histogram equalization method is used to enhance the collected image. On this basis, the improved gray world algorithm is used to realize the color error correction of the enhanced image. The experimental results show that the pixel gray level distribution of the extreme turbidity image after this method is very uniform, and the image quality is significantly improved; the turbidity of water body is in direct proportion to the color error of the collected image, and this method has excellent color error correction effect for the collected images under different turbidity of water body.
2022,44(15): 161-164 收稿日期:2022-03-11
DOI:10.3404/j.issn.1672-7649.2022.15.034
分类号:TP391.4
作者简介:鲍艳(1982-),女,硕士,讲师,研究方向为机器视觉及艺术设计
参考文献:
[1] 桂心远, 张然, 成昊远, 等. 基于神经网络和偏振成像的多浑浊度水下图像恢复[J]. 激光与光电子学进展, 2022, 59(4): 62–68
GUI Xin-yuan, ZHANG Ran, CHENG Hao-yuan, et al. Multi-turbidity underwater image restoration based on neural network and polarization imaging[J]. Laser & Optoelectronics Progress, 2022, 59(4): 62–68
[2] 任宇飞, 吴玉泉, 李宇, 等. 水下无人航行器主动目标自动检测方法研究[J]. 船舶力学, 2019, 23(2): 227–233
REN Yu-fei, WU Yu-quan, LI Yu, et al. Research on an unmanned underwater vehicle autonomous active target detection method[J]. Journal of Ship Mechanics, 2019, 23(2): 227–233
[3] 赵婧旭, 赵晨, 周锋. 基于主从式水下自主航行器移动组网的合作目标定位方法[J]. 电子与信息学报, 2022, 44(6): 1919–1926
ZHAO Jing-xu, ZHAO Chen, ZHOU Feng. Cooperative target location method based on master-slave autonomous underwater vehicles mobile network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1919–1926
[4] 蔡晨东, 霍冠英, 周妍, 等. 基于场景深度估计和白平衡的水下图像复原[J]. 激光与光电子学进展, 2019, 56(3): 137–144
CAI Chen-dong, HUO Guan-ying, ZHOU Yan, et al. Underwater image restoration method based on scene depth estimation and white balance[J]. Laser & Optoelectronics Progress, 2019, 56(3): 137–144
[5] 王国霖, 田建东, 李鹏越. 基于双透射率水下成像模型的图像颜色校正[J]. 光学学报, 2019, 39(9): 16–25
WANG Guo-lin, TIAN Jian-dong, LI Peng-yue. Image color correction based on double transmittance underwater imaging model[J]. Acta Optics Sinica, 2019, 39(9): 16–25
[6] 郑愈明, 范媛媛, 牛玉贞. 视差注意力的立体图像颜色校正方法[J]. 小型微型计算机系统, 2022, 43(3): 611–620
ZHENG Yu-ming, FAN Yuan-yuan, NIU Yu-zhen. Parallax attention based stereoscopic image color correction[J]. Journal of Chinese Computer Systems, 2022, 43(3): 611–620
[7] 曾赛, 杜选民, 范威, 等. 采用垂直短阵的水下小目标三维层析成像方法[J]. 哈尔滨工程大学学报, 2020, 41(10): 1583–1590
ZENG Sai, DU Xuan-yuan, FAN Wei, et al. Three-dimensional tomography method of underwater small target using vertical array[J]. Journal of Harbin Engineering University, 2020, 41(10): 1583–1590
[8] 张昊春, 曲博岩, 金亮, 等. 水下航行器热尾流目标海平面探测红外成像仿真[J]. 应用光学, 2019, 40(4): 525–534
ZHANG Hao-chun, QU Bo-yan, JIN Liang, et al. Infrared imaging simulation of sea surface detection of underwater vehicle thermal wake target[J]. Journal of Applied Optics, 2019, 40(4): 525–534