针对目前水下应急抢修焊接作业过程所需线缆繁杂、准备周期长等不利因素,开展无缆水下焊接电源研究,进行电气设计、防水耐压结构设计和磁力接地机构设计。通过将散热元件固定到水冷外壳内壁方式解决水密机壳内的电源散热问题。磁力接地机构则不仅有效缩短焊机输出回路电缆长度,还为潜水员提供临时着力点,便于应急修复作业的开展。所开发的水下焊接电源坚固便携,能承受1MPa水压,防护等级达到IP68,仅由锂电池供电即可完成水下应急修复作业,焊接质量基本满足水下应急修复要求。
Aiming at the unfavorable factors such as the complexity of wires and cables and long preparation cycle in the process of underwater emergency repair welding, the research on underwater welding power source without cables is carried out.The electrical design, waterproof and pressure resistant structure design and magnetic grounding mechanism design are carried out.The problem of power dissipation inside the watertight enclosure is solved by fixing the heat dissipation element to the inner wall of the water-cooled outer enclosure.The magnetic grounding mechanism not only effectively shortens the length of the output circuit cable of the welding machine, but also provides a temporary focus for divers to facilitate the development of emergency repair operations.The developed underwater welding power source is solid and portable, can withstand 1MPa water pressure, and the protection grade reaches IP68.The underwater emergency repair operation can be completed only by the power source of lithium battery, and the welding quality basically meets the requirements of underwater emergency repair.
2022,44(15): 177-180 收稿日期:2022-04-11
DOI:10.3404/j.issn.1672-7649.2022.15.038
分类号:TG434.3
作者简介:薛延华(1974 - ),男,硕士,副教授,研究方向为潜水技术及水下作业装备
参考文献:
[1] 侯恕萍, 张俊, 王钦政, 等. 船舶破损应急封堵技术与发展趋势[J]. 舰船科学技术, 2016, 38(5): 12–16
HOU S P, ZHANG J, WANG Q Z, et al. Emergency sealing technologies of ship damages and their development trends[J]. Ship Science and Technology, 2016, 38(5): 12–16
[2] 何磊, 赵满. 美国海军复合材料修复技术[J]. 舰船科学技术, 2017, 39(4): 149–153
HE L, ZHAO M. Repair technology of composite materials in U. S. Navy[J]. Ship Science and Technology, 2017, 39(4): 149–153
[3] 王元, 莫仁杰, 王勇. 纤维增强复合柔性软管的失效与修复[J]. 中国造船, 2019, 60(1): 244–251
WANG Y, MO R J, WANG Y. Failure and repair of flexibles with Fibre-Reinforced-Polymer components[J]. Shipbuilding of China, 2019, 60(1): 244–251
[4] 毕凤琴, 李会星, 孙振旭, 等. 海洋工程腐蚀防护及水下焊接修复技术研究[J]. 材料导报, 2014, 28(12): 51–54
BI F Q, LI H X, SUN Z X, et al. Research progress in marine corrosion protection and the underwater welding technology[J]. Materials Review, 2014, 28(12): 51–54
[5] 程方杰, 孔康骞, 欧阳忠宇, 等. 直接埋藏法修补疲劳裂纹缺陷的研究[J]. 天津大学学报, 2020, 53(5): 502–507
CHENG F J, KONG K Q, OUYANG Z Y, et al. Repair of fatigue crack defects by direct burial method[J]. Journal of Tianjin University, 2020, 53(5): 502–507
[6] 韩凤起, 李志尊, 孙立明, 等. 水下湿法手工自蔓延焊接技术[J]. 焊接学报, 2019, 40(7): 149–155
HAN F Q, LI Z Z, SUN L M, et al. Underwater wet manual SHS welding technology[J]. Transactions of the China Welding Institution, 2019, 40(7): 149–155
[7] 潘存海, 池行强, 杜素梅, 等. 一种新型电容储能焊机的研制[J]. 焊接技术, 2011, 40(10): 46–48
[8] 陈燕虎, 杨灿军, 李德骏, 等. 海底观测网接驳盒电源散热机理研究[J]. 机械工程学报, 2013, 49(2): 121–127
CHEN Y H, YANG C J, LI D J, et al. Research on heat dissipation mechanism of the power supply in seafloor observation network junction[J]. Journal of Mechanical Engineering, 2013, 49(2): 121–127
[9] 朱绍中, 常国峰, 周岳康, 等. 燃料电池轿车用PCU水冷装置的设计与试验[J]. 同济大学学报, 2008, 36(10): 1413–1416
ZHU S Z, CHANG G F, ZHOU Y K, et al. Design and experiment of water-cooling device for fuel cell vehicle[J]. Journal of Tongji University, 2008, 36(10): 1413–1416
[10] 王婷, 谷波, 赵鹏程, 等. 燃料电池汽车动力控制模块水冷冷板的性能仿真及评估[J]. 机械工程学报, 2013, 49(18): 150–158
WANG T, GU B, ZHAO P C, et al. Performance analysis and evaluation for the liquid cooling plate of PCU in FCV[J]. Journal of Mechanical Engineering, 2013, 49(18): 150–158