加筋板在船舶建造中具有广泛的应用,对其开展抗爆性能研究,有助于提升舰船生命力。本文以加筋板为研究对象,设计开展爆炸试验,对平面冲击波载荷持续作用下加筋板的爆炸响应进行研究。根据试验结果,提出了冲击波压力随标度距离和载荷持续时间的经验表达式,并利用该公式进行了数值模拟,发现计算结果与试验结果吻合较好。结果表明,在加劲肋的作用下,结构在不同方向的抗爆性能不同的。加强筋可以有效地提高加筋板的抗冲击性能。此外,本文还讨论了峰值压力大小对加筋板响应的影响,确定了加劲肋能承受的极限载荷。
Stiffened panel is widely used in ship construction. The research on its anti-blast performance is helpful to enhance the vitality of ship. In this paper, the stiffened panel is taken as the research object, and the blast test is carried out to study the blast response of the stiffened panel under the continuous plane shock wave load. According to the test results, the empirical expression of shock wave pressure with scale distance and load duration is proposed, and the numerical simulation is carried out by using the formula. It is found that the calculated results are in good agreement with the test results. The results show that the anti-blast performance of the structure is different in different directions under the action of stiffeners. Stiffeners can effectively improve the impact resistance of stiffened plates. In addition, the effect of peak pressure on the response of stiffened plate is discussed, and the ultimate load of stiffener is determined.
2022,44(16): 1-7 收稿日期:2021-05-13
DOI:10.3404/j.issn.1672-7649.2022.16.001
分类号:TN823
作者简介:张馨予(1997-),女,硕士研究生,研究方向为船舶与海洋工程结构爆炸冲击力学
参考文献:
[1] LYNCH C J, MURPHY A, PRICE M, et al. The computational post-buckling analysis of fuselage stiffened panels loaded in compression[J]. Thin-walled Structures, 2004, 42: 1445–1464
[2] CHEN Hao, LAI Hongpeng, QIU Yuliang , et al Reinforcing Distressed Lining Structure of Highway Tunnel with Bonded Steel Plates: Case Study [J]. Journal of Performance of Constructed Facilities, 2020, 34(1).
[3] LI Yongxuan, LIU Yuqing, LIU Rong. Finite Element Analysis on Axial Compressive Behaviors of High-Performance Steel Stiffened Plates in Bridge Application [J]. International Journal of Steel Structures, 2019, 19(5).
[4] MASOOD S N, VISHAKH R, VISWAMURTHY S R, et al. Influence of stiffener configuration on post-buckled response of composite panels with impact damages[J]. Composite Structures. 2018, 194: 433–444.
[5] CAMPBELL J, HETEY L, VIGNJEVIC R. Non-linear idealisation error analysis of a metallic stiffened panel loaded in compression[J]. Thin-Walled Structures, 2012, 54: 44–53.
[6] RUDRAPATNA N S, VAZIRI R, OLSON M D. Deformation and failure of blast-loaded stiffened plates[J]. International Journal of Impact Engineering, 2000, 24(5): 457–474.
[7] ZONG Z, ZHAO Y, LI H. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock[J]. Marine Structures, 2013, 31: 24–43.
[8] ZAKRISSON B, WIKMAN B, HÄGGBLAD H Å. Numerical simulations of blast loads and structural deformation from near-field explosions in air[J]. International Journal of Impact Engineering, 2011, 38(7): 597–612.
[9] BERNSTEIN D, GOETTELMAN R C. Generation of cylindrically symmetric implosions[J]. Review of Scientific Instruments, 1966, 37(10): 1373–1375.
[10] BENEDICK W B. Detonation wave shaping[R]. Albuquerque, N. Mex. : Sandia Labs. , 1972.
[11] FRITZ J N. A simple plane-wave explosive lens[R]. NM (USA): Los Alamos National Lab. , 1990.
[12] YADAV H S, KAMAT P V, Sundaram S G. Study of an explosive-driven metal plate[J]. Propellants, Explosives, Pyrotechnics, 1986, 11(1): 16–22.
[13] CHEN C Y, SHIUAN J H, LAN I F. Design of an inert material type plane wave generator[J]. Propellants, explosives, pyrotechnics, 1993, 18(3): 139–145.
[14] BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. On the synthesis of plane wave generators: performance limits, design paradigms and effective algorithms[C]//2012 6th European Conference on Antennas and Propagation. Institute of Electrical and Electronics Engineers, 2012: 3500–3503.
[15] ZHANG C S, ZOU D H, MADENGA V. Numerical simulation of wave propagation in grouted rock bolts and the effects of mesh density and wave frequency[J]. International journal of rock Mechanics and Mining Sciences, 2006, 4(43): 634–639
[16] XIONG W, ZHANG X, GUAN Z, et al. Study of simple plane wave generator with an air-metal barrier[J]. Defence Technology, 2014, 10(2): 190–197
[17] DING C, NGO T, GHAZLAN A, et al. Numerical simulation of structural responses to a far-field explosion[J]. Australian Journal of Structural Engineering, 2015, 16(3): 226–236
[18] 邱艳宇, 卢红标, 蔡立艮. 爆炸冲击波信号处理方法比较[J]. 爆破, 2010, 27(1): 92–95
[19] JONES N. Structural impact[M]. Cambridge University Press, 2011.
[20] BAKER W E, COX P A , KULESZ J J , et al. Explosion hazards and evaluation[M]. Elsevier, 2012.
[21] HETHERINGTON J, SMITH P. Blast and ballistic loading of structures[M]. Chemical Rubber Company Press, 2014.
[22] WU C, HAO H. Modeling of simultaneous ground shock and air-blast pressure on nearby structures from surface explosions[J]. International Journal of Impact Engineering, 2005, 31(6): 699–717
[23] 柯力. 钢质夹层板上层建筑结构防护性能优化及抗爆试验研究[D]. 镇江: 江苏科技大学, 2020.