为研究聚能装药水下爆炸冲击波分布规律,建立聚能装药水下爆炸对圆板靶作用的仿真模型,并与实验结果对比验证了仿真模型的可信性,通过仿真计算分析了前向冲击波峰值压力的分布规律。结果表明:靠近空气舱的前向冲击波波阵面近似为平面,其压力强度明显小于侧向;同一轴向距离下的峰值压力随着径向距离先增大再减小,其中的最大值点位置在空间上呈线性分布。通过对仿真数据的分段拟合,得到了较精确计算前向冲击波峰值压力的拟合公式。
In order to study the distribution law of shaped charge's shock wave, a simulation model of underwater explosion of shaped charge on the circular target was established, and the reliability of the simulation model was verified by comparison with the experimental results. The peak pressure's distribution law of the forward shock wave is analyzed by simulation calculation. The results show that the forward shock wave front close to the air chamber is approximately flat, and its pressure intensity is significantly smaller than that of the side direction. The peak pressure under the same axial distance first increases and then decreases with the radial distance, and the position of the maximum point is linearly distributed in space.
2022,44(16): 8-12 收稿日期:2021-09-14
DOI:10.3404/j.issn.1672-7649.2022.16.002
分类号:TJ67
作者简介:王健 (1995-),男,硕士研究生,研究方向为水下战斗部设计与毁伤评估
参考文献:
[1] 宋晓东, 杨清轩, 苏强, 等. 国外常规潜艇未来发展方向研究[J]. 舰船科学技术, 2015, 37(11): 8–13
SONG Xiao-dong, YANG Qing-xuan, SU Qiang, et al. Research on development direction of foreign SSK[J]. Journal of Ship Science and Technology, 2015, 37(11): 8–13
[2] 杜度, 魏征, 陈科, 等. 美国海军战略演变与核潜艇装备发展分析[J]. 舰船科学技术, 2021, 43(5): 177–180
DU Du, WEI Zheng, CHEN Ke, et al. Analysis on the evolution of US naval strategies and the development of nuclear submarines[J]. Journal of Ship Science and Technology, 2021, 43(5): 177–180
[3] 金健, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述[J]. 爆炸与冲击, 2020, 40(11): 1–25
JIN Jian, ZHU Xi, HOU Hai-liang, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions[J]. Journal of Explosion and Shock Waves, 2020, 40(11): 1–25
[4] 李兵, 房毅, 冯鹏飞. 聚能型战斗部水中兵器毁伤研究进展[J]. 兵器装备工程学报, 2016, 37(2): 1–6
LI Bing, FANG Yi, FENG Peng-fei. Process of damage research on shaped-charge warhead of underwater weapon[J]. Journal of Ordnance Equipment Engineering, 2016, 37(2): 1–6
[5] 刘念念, 宋丹丹, 金辉, 等. 半球形聚能装药对复合靶板结构的毁伤数值仿真与实验研究[J]. 振动与冲击, 2018, 37(4): 153–159
[6] 王长利, 周刚, 马坤, 等. 典型含水复合结构在聚能装药水下爆炸作用下的毁伤[J]. 船舶力学, 2018, 22(8): 1001–1010
WANG Chang-li, ZHOU Gang, MA Kun, et al. Damage anlysis of typical water partitioned structure under shaped charge underwater explosion[J]. Journal of Ship Mechanics, 2018, 22(8): 1001–1010
[7] 胡晓敏, 刘迎彬, 胡晓艳, 等. 药型罩结构对超聚能射流性能影响的数值模拟[J]. 兵器装备工程学报, 2019, 40(9): 41–45
[8] 张社荣, 孔源, 王高辉, 等. 水下和空中爆炸冲击波传播特性对比分析[J]. 振动与冲击, 2014, 33(13): 148–153
ZHANG She-rong, KONG Yuan, WANG Gao-hui, et al. Comparative analysis on propagation characteristics of shock wave induced by underwater and air explosions[J]. Journal of Vibration and Shock, 2014, 33(13): 148–153
[9] R RAJENDRAN, K NARASIMHAN. Deformation and fracture behavior of plate specimens subjected to underwater explosion[J]. International Journal of Impact Engineering, 2006, 32: 1945–1963
[10] 彭依云, 王铭明, 高长伟. 近场水下爆炸冲击波对板架结构毁伤特性研究[J]. 船舶力学, 2020, 24(8): 1081–1090
[11] LI Jian, RONG Ji-li. Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion[J]. European Journal of Mechanics B/Fluids, 2012, 32: 59–69
[12] 李金河, 汪斌, 王彦平, 等. 不同装药形状TNT水中爆炸近场冲击波传播的实验研究[J]. 火炸药学报, 2018, 41(5): 461–464
[13] 马坤, 王长利, 李名锐, 等. 聚能装药水下爆炸载荷特性[J]. 兵器材料科学与工程, 2019, 42(1): 1–5
MA Kun, WANG Chang-li, LI Ming-rui, et al. Underwater explosion load characteristic of shaped charge warhead[J]. Journal of Ordnance Material Science and Engineering, 2019, 42(1): 1–5