带坞舱船舶作为一种相对较为特殊的船型,主要通过沉浮作业将坞舱与外界水域直接相连,达到快速进出舟艇、车辆的目的。正是因为其湿坞作业时会形成半开敞水域,当母船以一定航速前进时将对坞舱内水深分布和坞舱口尾流区域产生明显的影响,需要事先进行预报评估避免因水深估计不足造成内部舟艇搁浅、碰顶等问题的发生。通过建立带尾跳板及坞舱的母船几何模型,并引入螺旋桨体积力法考虑螺旋桨对尾流场的影响,开发螺旋桨转速自适应调节程序,形成带坞舱船舶匀速运动数值仿真模型。研究不同航速及尾跳板攻角下舱内水深分布及船尾流动情况,开展半开敞水域水体流动特征机理分析。数值仿真结果表明:坞舱内水体运动达到稳定后的水位低于平均自由面;母船航速越高舱内水位越低;跳板攻角越大舱内水体稳定性越差。 研究成果能为带坞舱船舶的设计提供参考,同时为浮式装备进出坞的作业安全性评估提供技术手段。
As a relatively special type ,the ship with well deck directly connects the external water area for the rapid access of carried boats and vehicles, through sinking and floating operation. Carrier with a certain forward speed will influence the depth distribution in well deck and its wake flow. It is necessary to evaluate the well deck water depth in advance to avoid problems such as floating equipment shelf and bumping. By adopting the geometry model that contain well deck and gangplank, employing body-force model to considering propeller effects and proposing strategy for controlling propeller revolution, a numerical model for flow around ship with well dock is contributed. Through analyzing the water depth in well deck when changing ship advancing speed and gangplank attack angle, the water distribution mechanism in semi-open flow domain can be obtained. The results shows that, The water level in well deck is lower than that of avenge free surface when stable. The higher the ship speed, the lower the water level in the well deck. The larger the angle of gangplank, the worse the stability of water. This study can provide reference for the design of ship with well dock, and provide technical means for safety assessment of floating equipment inward and out dock.
2022,44(16): 39-44 收稿日期:2022-03-17
DOI:10.3404/j.issn.1672-7649.2022.16.008
分类号:U661
作者简介:王乃涵(1998-),男,硕士,助理工程师,研究方向为舰船及海洋结构物设计与制造
参考文献:
[1] 胡晓庆. 含有坞舱的船舶水动力性能分析[D]. 镇江: 江苏科技大学, 2019.
[2] GANG Xu, TIAN-Rui Mei, MING-Liang Hu, et al. Hydrodynamic analysis of ship with well deck in the linear numerical wave tank[J]. Mathematical Problems in Engineering, 2020(10).
[3] MCCALLUM D, ENGLE A H, PLATZER G P, Hydrodynamic efficiency improvements for U. S. Navy ships[J]. Naval Engineers Journal, 1991, 103(3): 74–90
[4] 程明道, 刘晓东, 张建武. 尾板对高速水面舰水动力影响的模型试验研究[C]// 船舶水动力学学术会议论文集, 2004.
[5] KARAFIATH G, CUSANELLI D, LIN C W. Stern Wedges and Stern Flaps for Improved Powering - U. S. Navy Experience [J]. Military Vessels, 2011.
[6] 李冬琴, 李鹏, 章易立, 等. 分段式尾压浪板对高速船阻力性能的影响[J]. 船舶工程, 2019, 41(7): 37–43
[7] 陈怀远. 船舶压浪板设计优化及应用[D]. 大连: 大连理工大学, 2019.
[8] ARASH E, MARKO V. A body-force model for waterjet pump simulation[J]. Applied Ocean Research, 2019, 90.
[9] 傅慧萍, THAD J. MICHAEL, CARRICA P M. 一种基于体积力螺旋桨模型的自航计算方法. 船舶力学, 2015, 19(7): 791–796.
[10] STAR-CCM+ User Guide. Simens, version 15.06[R] 2020.