以一艘搭载六自由度补偿平台的风电运维双体船为研究对象,基于三维势流理论和波浪绕射理论,开展船舶在风、浪、流耦合作用下的运动响应研究,分析船舶重心处的频域运动响应、附加质量以及辐射阻尼和时域运动响应历程,获得在不同浪向角与波浪周期中的船舶运动响应结果,并将船舶重心处的运动响应转换为六自由度补偿平台基座安装点位置处的运动响应,得到该安装点处的运动响应历程以及在不同浪向下的最大垂荡幅值,为该平台控制系统以及液压缸运动位移的运动学分析提供数据输入,为运维时机的选择以及平台液压机构的选型提供参考依据。
A wind power operation and maintenance catamaran with 6-DOF compensation platform is taken as the research object. Based on the theories of three-dimensional potential and wave diffraction, the article analyzed the ship's motion response under the coupling effect of wind, wave and current. The frequency domain motion response at the center of gravity of the ship, additional mass, radiation damping, and time domain motion response history were also analyzed, in order to obtain ship motion response results in different wave angles and wave cycles. The article also converted the motion response at the center of gravity of the ship to the motion response at the installation point of the 6-DOF compensation platform, and achieved the motion response history at the installation point and the maximum amplitude of the heave response in different wave directions. This paper is to provide the data input for the platform control system and the kinematic analysis of the hydraulic cylinder movement displacement, and reference for determining the suitable time for operation and maintenance and the selection of platform hydraulic pressure institutions.
2022,44(16): 50-56 收稿日期:2021-04-06
DOI:10.3404/j.issn.1672-7649.2022.16.010
分类号:U661
作者简介:王珂(1979-),女,博士,副教授,研究方向为船舶与海洋工程
参考文献:
[1] 时智勇, 王彩霞, 李琼慧. “十四五”中国海上风电发展关键问题[J]. 中国电力, 2020, 53(07): 8–17
[2] 高巍, 周华. 风电运维船登靠作业概率评估[J]. 中国海洋平台, 2018, 33(06): 77–84
[3] FANG C C, CHAN H S A. Incecik. Investigation of motions of catamarans in regular waves—II[J]. Ocean Engineering, 1997, 24(10).
[4] 耿彦超, 顾学康, 汪雪良. 高速双体船斜浪中运动响应及连接桥波浪载荷预报[J]. 船舶力学, 2010, 14(04): 385–392
[5] 金晨露. 风电双体维护船船型设计研究与水动力性能优化[D]. 镇江: 江苏科技大学, 2018.
[6] 周云司雅. 海上风电运维双体船减摇方法研究[D]. 镇江: 江苏科技大学, 2019.
[7] 邓磊, 董文才, 姚朝帮. 迎浪规则波中小水线面双体船纵向运动及波浪载荷非线性特性数值分析(英文)[J]. 船舶力学, 2017, 21(03): 249–262
[8] 谢云平, 彭鹏. 海上三体风电运维船阻力和运动性能综合研究[J]. 船舶工程, 2015, 37(12): 13–17
[9] RAÚL Guanche, MICHELE Martini, Alfonso Jurado, Iñigo J. Losada. Walk-to-work accessibility assessment for floating offshore wind turbines[J]. Ocean Engineering, 2016: 116
[10] 张萌. 海上廊桥波浪补偿控制研究[D]. 大连: 大连海事大学, 2020.
[11] 苏建国. 基于并联平台的海上风电运维船舶辅助登靠系统研究[D]. 南京: 南京理工大学, 2019.
[12] 徐佳. 具有波浪补偿功能的海上换乘舷梯设计与仿真[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[13] LI Ying, ZHOU Rui, LI Hao Kuan, et al. The Offshore Wave Simulation Based on the Improved P-M Spectrum and Multiple Fractal Interpolation[J]. Advanced Materials Research, 2014: 3470
[14] 戴佳莉, 陈新权, 杨启. 超大型双体船运动响应与波浪载荷研究[J]. 舰船科学技术, 2020, 42(17): 30–35
[15] 江苏大洋海装50m风电运维船试航成功[J]. 船舶工程, 2020, 42(1): 62.