液舱晃荡对船舶运动产生的影响不可忽略,晃荡引起的冲击载荷与效应将造成舱壁结构的局部破坏。本文以矩形和棱形液舱为研究对象,基于自适应网格加密技术(AMR)对液舱遭遇不同外部激励的情况进行数值模拟。将自由面波高的计算值与理论值对比,吻合较好,验证了AMR的准确性。通过对比液舱在不同工况下的波高变化及舱内的气液分布,探究了液舱晃荡过程中的非线性动力学行为和作用机理。结果显示,液舱遭遇横摇激励后,舱内自由面波高的非线性程度明显比遭遇水平余弦激励低;高装载率下两侧围壁的波高幅值较中等装载率低,舱内液体越多,抵抗外部激励的力矩越大,液体的晃荡程度越不明显。不同于矩形液舱遭遇水平激励的情况,棱形液舱遭遇横摇激励时,舱内液体晃荡的非线性程度较弱,自由面几乎不会发生大幅度波浪翻卷或破碎,波浪形态主要是行进波和驻波。本文对液舱晃荡过程中的非线性动力学行为研究有一定借鉴作用。
The influence of tank sloshing on ship motion can not be ignored. The impact load and effect caused by sloshing will cause local damage to bulkhead structure. In this paper, the adaptive mesh refinement (AMR) is used to numerically simulate the tanks encountering different external excitations. By comparing the calculated free surface wave height based on AMR with the analytical value based on potential flow theory, the accuracy of AMR is verified. With the basis of the wave height changes of the walls on both sides and the gas-liquid distribution in the tank when it is near the resonance frequency, the non-linear dynamic behavior and mechanism of action during the sloshing process are explored. The results show that the waveform nonlinearity of the free surface in the tank is significantly lower than that of the horizontal cosine excitation when the tank encounters the rolling excitation. At high loading ratio, the wave height amplitude of the walls on both sides is lower than that of the medium loading rate. The more liquid in the tank, the larger the torque against external excitation, the less obvious the liquid sloshing will be. Unlike the case where rectangular tank is subjected to external excitation as horizontal excitation, when prismatic tank is subjected to rolling excitation, the non-linearity of liquid sloshing in the tank is weaker, and there is almost no large wave roll or break on the free surface. The main wave forms are traveling wave and standing wave.
2022,44(16): 57-64 收稿日期:2021-06-08
DOI:10.3404/j.issn.1672-7649.2022.16.011
分类号:U671.99
基金项目:广东海洋大学科研启动经费资助项目(060302072101);广东省促进经济高质量发展专项(粤融办函[2020]161号);广东省促进经济高质量发展专项资金(海洋经济发展)
作者简介:张大朋(1987-),男,博士,研究方向为船舶与海洋结构物动态响应
参考文献:
[1] 周博, 伍友军, 李曼, 等. 基于晃荡载荷的液舱结构强度研究[J]. 舰船科学技术, 2021, 43(1): 37–42
[2] 崔铭超, 王庆伟, 张彬. 纵摇运动下船载养殖水体流场特性数值分析[J]. 船舶工程, 2020, 42(10): 56–60+132
[3] 肖凯隆, 陈作钢, 代燚. 多液舱晃荡与船体运动耦合数值研究[J]. 船舶工程, 2020, 42(8): 50–54
[4] 胡泰安. 基于光滑粒子流体动力学与光滑点插值耦合方法模拟液舱晃荡问题[D]. 大连: 大连理工大学, 2020.
[5] 王庆丰, 徐刚, 王树齐, 等. 耦合激励下的液舱晃荡新型数值解法[J]. 船舶力学, 2019, 23(5): 523–530
[6] 徐博. 随机激励下液舱晃荡及制荡效果研究[D]. 大连: 大连理工大学, 2020.
[7] 吴巧瑞, 张珍, 陈明辉, 等. 基于粒子法的水平挡板对液舱晃荡现象影响的分析[J]. 中国造船, 2021, 62(1): 50–61
[8] 王瑾, 吴磊. 液舱晃荡与船体耦合运动的全非线性数值模拟与分析[J]. 船舶力学, 2020, 24(9): 1142–1150
[9] 丁仕风, 周利, 周亚军. 液化天然气船晃荡与冰区运动的耦合分析[J]. 哈尔滨工程大学学报, 2020, 41(8): 1136–1142
[10] 程聪. 基于SPH方法的液舱晃荡和多相流问题的并行数值模拟[D]. 大连: 大连理工大学, 2020.
[11] 罗富强, 邓锐, 汪昱全, 等. 基于OpenFOAM的自适应网格计算策略研究[J]. 中国造船, 2020, 61(S2): 169–178
[12] 李金龙, 尤云祥, 陈科. 一种几何VOF方法在液舱晃荡流动模拟中的应用[J]. 上海交通大学学报, 2019, 53(8): 943–951
[13] 张秋艳, 任冰, 蒋梅荣. 二维矩形弹性液舱内液体晃荡数值模拟研究[J]. 船海工程, 2012, 41(4): 11–15+20