本文采用离散单元法建立圆柱型颗粒阻尼器的仿真模型,研究垂直振动边界条件驱动下由颗粒体产生的损耗功率,结果表明颗粒的填充率、简谐振动的频率与幅值均会影响着颗粒阻尼器的损耗功率,并且在高填充率范围内存在一个填充率的最优值。当简谐振动的频率固定时,只有当简谐振动的幅值超过某个临界点后,颗粒阻尼器才体现出耗能能力并且损耗功率随着位移幅值的增大而增大,在低频段具有强耗能特性。
In this paper,the discrete element method is used to study the energy dissipation characteristics of cylindrical particle dampers in simple harmonic vibration.The resuls show that the filling rate of particles,the frequency and amplitude of simple harmonic vibration will affect the loss power of particle dampers.The loss of power at high filling rate is generally larger than the low filling rate and there is an optimal value of filling rate.The loss power generated by particles has an ampitude critical point,before the critical point,the particle daping does not lose energy,after the critial point,the loss power increases with the increase of the displacement amplitude,and has strong energy dissipation characteristics in the low frequency band.
2022,44(16): 65-68 收稿日期:2021-06-09
DOI:10.3404/j.issn.1672-7649.2022.16.012
分类号:TB535
作者简介:张英杰(1996-),男,硕士研究生,研究方向为振动与噪声控制
参考文献:
[1] SAEKI M. Analytical study of multi-particle damping[J]. Journal of Sound and Vibration, 2005, 281(3–5): 1133–44
[2] 胡溧, 黄其柏, 许智生. 颗粒阻尼的回归分析研究[J]. 中国机械工程, 2008, 19(23): 2834–2837
[3] 周天平. 颗粒阻尼器对悬臂梁结构受追振动的减震作用研究 [D]. 兰州: 兰州大学, 2012.
[4] 蒋华, 陈前. 恢复力曲面法在颗粒阻尼器研究中的应用[J]. 振动、测试与诊断, 2007(3): 228–31+59
[5] 刘雁梅, 黄协清, 陈天宁. 非阻塞性颗粒阻尼加筋板振动功率流的研究[J]. 西安交通大学学报, 2001(1): 61–65
[6] TANRIKULU A H. Application of ANN techniques for estimating modal damping of impact-damped flexible beams[J]. Advances in Engineering Software, 2009, 40(10): 986–90
[7] HERTZ H. On the contact of elastic solids [J]. Journal für die reine and Angewandte Mathematik (Crelles Journal), 1880, 92(156).
[8] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Géotechnique, 1979, 29(1).
[9] Y. T, T. T, T. I. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe [J]. Elsevier, 1992, 71(3).
[10] D. M R. Compliance of elastic bodies in contact [J]. Journal of Applied Mechanias, 1949, 16(3).
[11] 胡国明. 颗粒系统的离散元素法分析仿真 [M]. 颗粒系统的离散元素法分析仿真, 2010.
[12] 姚冰. 颗粒阻尼建模仿真及工程应用 [D]. 南京: 南京航空航天大学, 2013.
[13] 周宏伟. 颗粒阻尼及其控制的研究与应用 [D]. 南京: 南京航空航天大学, 2008.
[14] 姜泽辉, 刘新影, 彭雅晶, 等. 竖直振动颗粒床中的倍周期运动[J]. 物理学报, 2005(12): 182–188