在船舶专用汽轮发电机大力发展的背景下,针对目前发电机制造成本高的这一问题提出了发电机损耗优化及降本研究。涡流损耗的准确计算是研究端部电磁的重要基础。首先,结合电磁场理论,对端部涡流损耗的原理进行推导,并建立端部三维有限元模型;其次,针对传统瞬态仿真方法耗时长的问题,提出时谐仿真方法,节省了大量时间。最后,为解决磁屏蔽厚度过厚带来的发电机制造成本增加的问题,提出参数化建模方法,只修改目标结构件参数,实现快速建模,建立多个不同磁屏蔽厚度的案例模型,得到不同结构件在不同磁屏蔽厚度下的涡流损耗并分析磁屏蔽厚度的具体影响。结合经济性指标选取合适的磁屏蔽厚度,为船用汽轮发电机端部设计提供一定指导意义。
Under the background of the vigorous development of ship-specific steam turbine generators, the optimization of generator loss and the reduction of this study are put forward in view of the current problem of high generator manufacturing cost. The accurate calculation of vortex loss is an important basis for studying end electromagnetics. First, combined with the electromagnetic field theory, the principle of end eddy current loss was deduced, and a three-dimensional finite element model of the end was established; second, in view of the time-consuming problem of traditional transient simulation methods, a time-harmonic simulation method was proposed to save a lot of time. Finally, in order to solve the problem of the increase in the manufacturing cost of the generator caused by the excessive thickness of the magnetic shield, a parametric modeling method is proposed, which only modifies the parameters of the target structure to achieve rapid modeling and establish multiple case models with different magnetic shield thicknesses. Get the eddy current loss of different structural parts under different magnetic shield thickness and analyze the specific influence of magnetic shield thickness. Combined with the economic index to choose the appropriate magnetic shield thickness, for marine turbine generator end design to provide a certain guiding significance.
2022,44(16): 105-109 收稿日期:2021-07-13
DOI:10.3404/j.issn.1672-7649.2022.16.021
分类号:TM303
基金项目:上海市自然科学基金资助项目(11ZR1413800)
作者简介:刘明旺(1997-),男,硕士研究生,研究方向为汽轮机技术、风力发电等
参考文献:
[1] 中国船舶七〇四所. 船用20 MW级汽轮发电机组获得应用[J]. 船舶工程, 2020, 42(7): 12.
[2] 王宇, 华春梅, 徐智, 等. 船用汽轮发电机组多激励振动特性研究[J]. 舰船科学技术, 2015, 37(9): 105–109+115
WANG Yu, HUA Chun-Mei, XU Zhi, el al. Multi-excitation vibration characteristic study of marine turbine-generator unit[J]. Ship Science and Technology, 2015, 37(9): 105–109+115
[3] 王蒲瑞. 机网暂态过程中大型空冷汽轮发电机端部电磁场研究[D]. 北京: 北京交通大学, 2019.
[4] 鲍晓华, 方勇, 程晓巍, 等. 基于三维有限元的大型充水式潜水电机端部涡流损耗[J]. 电工技术学报, 2014, 29(7): 83–89
BAO Xiao-hua, FANG Yong, CHENG Xiao-wei, et al. 3-D finite element method analysis of eddy current losses in the end region of large water filling submersible motor[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 83–89
[5] 梁艳萍, 黄浩, 李林合, 等. 大型空冷汽轮发电机端部磁场数值计算[J]. 中国电机工程学报, 2007, 27(3): 73–77
[6] 王立坤. 汽轮发电机端部电磁场与涡流损耗及其影响因素的研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.
[7] 夏海霞, 姚缨英, 熊素铭, 等. 1000MW汽轮发电机端部磁-热耦合分析[J]. 中国电机工程学报, 2008(14): 118–122
[8] 姚若萍, 侯小全, 饶芳权. 大型水轮发电机在各种工况下的端部磁场计算[J]. 上海交通大学学报, 2002, 36(2): 234–236
[9] 章跃进, 江建中, 崔巍. 数值解析结合法提高电机磁场后处理计算精度[J]. 中国电机工程学报, 2007, 27(3): 68–72
[10] 雍耀维, 郭常宁, 杨磊. 趋肤效应和磁场对电加工特性影响研究[J]. 机械设计与制造, 2015(2): 4–7
[11] 欧阳鹏, 王建辉, 范成西, 等. 基于ElecNet 的汽轮发电机定子绕组端部结构建模及电场计算[J]. 大电机技术, 2009(1): 14–18