舰船在航行过程中受到自然因素、自身因素和水域因素影响易发生安全事故,造成严重程度不同的人员伤亡、直接经济损失和海洋环境污染损失。为保证舰船航行的安全性,采用极限学习机算法对安全性进行预测,借助极限学习机算法泛化性能好、学习速度快等优势,准确得出最优解,提高航行安全性影响因素识别的准确率。本文概述改进极限学习机算法与网络训练流程,提出改进极限学习机算法在舰船安全性预测中的预测流程与模型构建。仿真实验表明,本文提出的算法能够提高舰船安全性识别的准确性和时效性。
In the course of navigation, ships are prone to safety accidents due to natural factors, their own factors and water factors, resulting in casualties, direct economic losses and marine environmental pollution losses of varying degrees of severity. In order to ensure the safety of ship navigation, the extreme learning machine algorithm should be used to predict the safety. With the help of the advantages of the extreme learning machine algorithm, such as good generalization performance and fast learning speed, the optimal solution can be accurately obtained, and the navigation safety can be improved. The accuracy of factor identification. This paper summarizes the improved extreme learning machine algorithm and network training process, and proposes the prediction process and model construction of the improved extreme learning machine algorithm in ship safety prediction. Simulation experiments show that the algorithm proposed in this paper can improve the accuracy of ship safety identification. performance and effectiveness.
2022,44(16): 151-154 收稿日期:2022-01-14
DOI:10.3404/j.issn.1672-7649.2022.16.032
分类号:U665
基金项目:江西省教育厅科学技术研究项目(GJJ204203)
作者简介:胡晓辉(1977-),女,硕士,副教授,主要从事计算机软件开发和研究
参考文献:
[1] 周书仁, 曹思思, 蔡碧野. 基于改进极限学习机算法的行为识别[J]. 计算机工程与科学, 2017(9): 1749–1757
ZHOU Shu-ren, CAO Si-si, CAI Bi-ye. Behavior recognition based on improved extreme learning machine algorithm[J]. Computer Engineering and Science, 2017(9): 1749–1757
[2] 李巧君. 基于蚁群算法和极限学习机的舰船电子装备备件优化模型[J]. 舰船科学技术, 2022, 44(5): 158–161
LI Qiao-jun. Optimization model of ship electronic equipment spare parts based on ant colony algorithm and extreme learning machine[J]. Ship Science and Technology, 2022, 44(5): 158–161
[3] 唐延强, 李成海, 宋亚飞. 基于改进粒子群优化和极限学习机的网络安全态势预测[J]. 计算机应用, 2021(3): 768–773
TANG Yan-qiang, LI Cheng-hai, SONG Ya-fei. Network security situation prediction based on improved particle swarm optimization and extreme learning machine[J]. Computer Applications, 2021(3): 768–773
[4] 屈力刚, 杨忠文, 杨野光, 等. 采用改进粒子群算法的铣削参数优化研究[J]. 机械设计与制造, 2022(7): 187–191
QU Li-gang, YANG Zhong-wen, YANG Ye-guang, et al. Research on optimization of milling parameters using improved particle swarm optimization[J]. Mechanical Design and Manufacturing, 2022(7): 187–191
[5] 寇英信, 奚之飞, 杨爱武. 基于改进核极限学习机和集成学习理论的目标机动轨迹预测[J]. 国防科技大学学报, 2021(5): 23–35
KOU Ying-xin, XI Zhi-fei, YANG Ai-wu. Prediction of target maneuvering trajectory based on improved nuclear extreme learning machine and ensemble learning theory[J]. Journal of National University of Defense Technology, 2021(5): 23–35
[6] 赵坤, 覃锡忠, 贾振红. 采用改进的布谷鸟算法优化极限学习机[J]. 计算机仿真, 2018(11): 236–241
ZHAO Kun, QIN Xi-zhong, JIA Zhen-hong. Optimizing extreme learning machines with improved cuckoo algorithm[J]. Computer Simulation, 2018(11): 236–241