研究基于大数据的舰船故障趋势估计方法,提升故障趋势估计效果。利用改进的注意力机制,提取舰船各设备历史运行数据的多变量时间序列;在自回归预测模型内,输入多变量时间序列,输出舰船故障趋势估计值;在小波神经网络内,输入多变量时间序列,输出舰船故障趋势估计值,通过梯度修正法调整小波神经网络参数,降低故障趋势估计误差;计算自回归预测模型和小波神经网络,输出的故障趋势估计值的均值,作为最终故障趋势估计结果。实验证明:该方法可精准估计舰船故障趋势;发生不同故障时,该方法依旧能够精准估计故障趋势;舰船各设备故障趋势估计的赤池信息准则值较低,具备较优的故障趋势估计效果。
The ship fault trend estimation method based on big data is studied to improve the effect of fault trend estimation. Using the improved attention mechanism, the multivariable time series of the historical operation data of each ship equipment is extracted. In the autoregressive prediction model, the multivariable time series is input and the ship fault trend estimation is output. In the wavelet neural network, the multivariable time series is input, the ship fault trend estimation value is output, and the parameters of the wavelet neural network are adjusted by the gradient correction method to reduce the fault trend estimation error. The average value of the estimated fault trend is calculated by the autoregressive prediction model and the wavelet neural network, which is used as the final fault trend estimation result. Experiments show that this method can accurately estimate the ship fault trend. When different faults occur, the method can still accurately estimate the fault trend. The red pool information criterion value of ship equipment fault trend estimation is low, which has better fault trend estimation effect.
2022,44(16): 159-162 收稿日期:2022-01-30
DOI:10.3404/j.issn.1672-7649.2022.16.034
分类号:TP206
基金项目:中国博士后科学基金资助项目(2019M844);江苏省高等学校优秀科技创新团队(海事大数据优秀科技创新团队)项目(苏教科函〔2019〕7号);江苏省青蓝工程中青年学术带头人项目(苏教师〔2020〕10号)
作者简介:蒋玉婷(1981-),女,硕士,副教授,研究方向为计算机应用、计算机软件、大数据及云计算等
参考文献:
[1] 曾友渝, 谢强. 基于改进RNN和VAR的船舶设备故障预测方法[J]. 计算机科学, 2021, 48(6): 184–189
ZENG You-yu, XIE Qiang. Fault prediction method based on improved rnn and var for ship equipment[J]. Computer Science, 2021, 48(6): 184–189
[2] 蒋佳炜, 胡以怀, 方云虎, 等. 船舶动力装置智能故障诊断技术的应用与展望[J]. 中国舰船研究, 2020, 15(1): 56–67
JIANG Jia-wei, HU Yi-huai, FANG Yun-hu, et al. Application and prospects of intelligent fault diagnosis technology for marine power system[J]. Chinese Journal of Ship Research, 2020, 15(1): 56–67
[3] 贾宝柱, 贾志涛, 余培文, 等. 数据驱动的船舶智能故障诊断方法[J]. 控制工程, 2019, 26(10): 1892–1898
JIA Bao-zhu, JIA Zhi-tao, YU Pei-wen, et al. Data-driven vessel smart fault diagnosis method[J]. Control Engineering of China, 2019, 26(10): 1892–1898
[4] 吴建波, 王春艳, 洪华军, 等. 基于极限学习机的船舶柴油机故障诊断[J]. 计算机工程与应用, 2019, 55(15): 147–152
WU Jian-bo, WANG Chun-yan, HONG Hua-jun, et al. Fault diagnosis of marine diesel engine based on extreme learning machine[J]. Computer Engineering and Applications, 2019, 55(15): 147–152
[5] 韩敏, 李锦冰, 许美玲, 等. 具有工作状态转换的EIIKF船舶柴油机故障预测[J]. 自动化学报, 2019, 45(5): 920–926
HAN Min, LI Jin-bing, XU Mei-ling, et al. Fault prognosis of marine diesel engine with working state transition based on EIIKF[J]. Acta Automatica Sinica, 2019, 45(5): 920–926
[6] 尚前明, 姜苗, 陈辉, 等. 基于PSO-ELM算法实现船舶发电机组故障识别[J]. 船舶工程, 2021, 43(1): 87–94
SHANG Qian-ming, JIANG Miao, CHEN Hui, et al. Fault identification of marine generator set based on PSO-ELM algorithm[J]. Ship Engineering, 2021, 43(1): 87–94
[7] 刘国强, 林叶锦, 张志政, 等. 基于粗糙集和优化DAG-SVM的船舶主机故障诊断方法[J]. 中国舰船研究, 2020, 15(1): 68–73
LIU Guo-qiang, LIN Ye-jin, ZHANG Zhi-zheng, et al. Main marine engine fault diagnosis method based on rough set theory and optimized DAG-SVM[J]. Chinese Journal of Ship Research, 2020, 15(1): 68–73