结构高速入水涉及非定常、可压缩、湍流以及多介质耦合作用等过程,具有强非线性的特点,长期以来一直是研究的难点问题。本文以平头锥回转体为研究对象,针对入水撞击和开空泡阶段的流固耦合问题,采用光滑粒子流体动力学(SPH)和有限元方法(FEM)耦合方法建立回转体入高速入水流固耦合计算模型,进行100 m/s初速度条件下回转体垂直入水数值计算并对方法的有效性进行验证。结果表明,该方法可以有效解决入水冲击流固耦合数值仿真中由于液体介质不连续变形导致的计算适应性问题,可以有效捕捉入水过程中液面变形和飞溅情况,计算得到回转体高速入水过程中的运动特性、压力峰值、结构动态响应以及空泡形态情况,分析不同入水速度对入水过程的影响,研究结果可为结构物高速入水设计提供技术支撑。
The process of high-speed water entry of a structure involves non-constant, compressible, turbulent flow and multi-media coupling, which is characterized by strong non-linearity and has long been a difficult problem for research. In this paper, the SPH-FEM coupling method was used to establish a fluid-structure interaction computational model for high-speed water entry process, and the numerical calculations for vertical water entry of a revolution body under 100 m/s initial velocity was carried out which was proved to be effective.The results show that the method can effectively solve the computational adaptability problems caused by the discontinuous deformation of the liquid medium in the numerical simulation of water entry impact, can effectively capture the liquid surface deformation and splash in the process of water entry, and calculate the motion characteristics, pressure peak, structural dynamic response and cavity characteristics of the revolution body in the process of high-speed water entry, and analyze the influence of different water entry speeds on the water entry process. The results of the research can provide technical support for the design of structures in high-speed water entry.
2022,44(17): 6-11 收稿日期:2021-12-14
DOI:10.3404/j.issn.1672-7649.2022.17.002
分类号:TJ630
作者简介:高英杰(1994-),硕士助理工程师,研究方向为流固耦合数值仿真
参考文献:
[1] 王永虎, 石秀华. 入水冲击问题研究的现状与进展[J]. 爆炸与冲击, 2008, 28(3): 276–282
[2] Von KARMAN T. The impact of seaplane floats during landing[J]. Technical Report Archive & Image Library, 1929(321): 309–313
[3] WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Z Angew Math Mesh, 1932, 4(12): 193–215
[4] WORTHINGTON A M, COLE R S. Impact with a liquid surface, studied by the aid of instantaneous photography. Paper II.[J]. Proceedings of the Royal Society of London, 1899, 65(1): 153–154
[5] MAY A, WOODHULL J C. The virtual mass of a sphere entering water vertically[J]. Journal of Applied Physics, 1950, 21(12): 1285–1289
[6] MAY A, ALBERT. Effect of surface condition of a sphere on its water‐entry cavity[J]. Journal of Applied Physics, 1951, 22(10): 1219–1222
[7] 顾建农, 张志宏, 范武杰. 旋转弹丸入水侵彻规律[J]. 爆炸与冲击, 2008, 4(25): 55–63
[8] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究[J]. 爆炸与冲击, 2011, 31(6): 579–584
[9] 陈震, 肖熙. 二维楔形体入水砰击仿真研究[J]. 上海交通大学学报, 2007, 41(9): 1425–1428
[10] 何春涛, 王聪, 闵景新, 等. 回转体匀速垂直入水早期空泡数值模拟研究[J]. 工程力学, 2012, 29(4): 237–243
[11] 马庆鹏, 魏英杰, 王聪, 等. 锥头圆柱体高速入水空泡数值模拟[J]. 北京航空航天大学学报, 2014, 34(2): 174–180
[12] 李强, 石秀华, 曹银萍. 鱼雷头部形状对人水影响的数值模拟研究[J]. 弹箭与制导学报, 2009, 4(29): 173–176
[13] 杨力, 周勇, 李华峰, 等. 基于ALE方法的平底结构入水冲击动力特性研究[J]. 舰船科学技术, 2017, 39(12): 125–133
[14] 路丽睿, 魏英杰, 王聪, 等. 凹形运动体三自由度入水运动特性数值研究[J]. 舰船科学技术, 2018, 40(9): 13–20
[15] 王珂, 陈刚, 袁洪涛. 弹性回转体入水砰击载荷预报[J]. 船海工程, 2011, 40(5): 27–32
[16] SHI H H, TAKAMI T. Some progress in the study of the water entry phenomenon[J]. Experiments in Fluids, 2001, 30(4): 475–477
[17] 宣建明, 缪弋, 程军, 等. 返回舱水上冲击特性的试验研究与理论计算[J]. 水动力学研究与进展, 2000(3): 276−286.