基于流固耦合方法将计算流体力学与结构瞬态响应计算相结合,对竖直弯管内气液两相流诱导振动现象进行数值仿真和研究。建立竖直平面内4种转弯角度的弯管模型,得到不同转弯角度下气液两相流的液相体积分数云图以及管道结构的振动响应。计算结果表明,随着竖直弯管转弯角度的增大,气液两相流的流型转化加快,两相在弯头区域的冲击挤压作用以及管道振动响应均呈现出先增大后减小的趋势。数值仿真结果可为类似管路系统的设计提供参考。
The gas-liquid two-phase flow-induced vibration phenomenon in the vertical elbows was numerically simulated by combining the computational fluid dynamics and the structural transient response calculation based on the fluid-structure coupling method. The finite element model of vertical elbows with four turning angles was established, and the liquid phase volume fraction of gas-liquid two-phase flow and the vibration response of the pipeline structure were obtained. The calculation results showed that with the increase of the turning angle, the flow pattern transition was accelerated, and the impact and squeeze between the gas phase and liquid phase and the vibration response of the pipeline structure increased at first and then decreased. The numerical simulation could provide a reference for the design of similar piping systems.
2022,44(17): 17-22 收稿日期:2021-11-02
DOI:10.3404/j.issn.1672-7649.2022.17.004
分类号:U661.44
基金项目:工信部高技术船舶“十四五”科研资助项目(CJ09N20)
作者简介:张宇祥(1997-),男,硕士研究生,研究方向为船体结构强度与动力学
参考文献:
[1] 徐丽琼. 船舶输流管道系统的振动研究[D]. 武汉: 武汉理工大学, 2009.
[2] 卢嘉伟. LNG管内流体诱导振动以及影响因素分析研究[D]. 武汉: 武汉理工大学, 2018.
[3] MIWA S, MORI M, HIBIKI T. Two-phase flow induced vibration in piping systems[J]. Progress in Nuclear Energy, 2015, 78(jan.): 270–284
[4] 张涛, 方舟, 董皓, 等. 含气率对长圆管内气液两相流流场特性的影响[J]. 西安工业大学学报, 2019, 39(3): 273–277
[5] RIVERIN J L, PETTIGREW M J. Vibration excitation forces due to two-phase flow in piping elements[J]. 2007.
[6] 张红艳, 白长青, 吴伟阳, 等. 气液两相段塞流作用下管道流固耦合动力学分析[J]. 应用力学学报, 2017, 34(146): 63–67+215-216
[7] 马晓旭, 田茂诚, 张冠敏, 等. 水平管内气液两相流诱导振动的数值研究[J]. 振动与冲击, 2016, 35(16): 204–210
[8] 蔡标华, 方超, 马士虎, 等. 流固耦合作用下的注水管路流激振动噪声数值模拟[J]. 舰船科学技术, 2020, 42(7): 118–122
[9] 宋学官, 蔡林, 张华. ANSYS流固耦合分析与工程实例[M]. 北京:中国水利水电出版社, 2012.
[10] ZHANG H, BATHE K J. Direct and iterative computing of fluid flows fully coupled with structures[C]//Computational Fluid and Solid Mechanics, 2001.
[11] BATHE K J , HOU Z , JI S . Finite element analysis of fluid flows fully coupled with structural interactions[J]. Computers & Structures, 1999, 72(s 1–3): 1–16.
[12] 国丽萍, 刘承婷, 刘保君. 石油工程多相流体力学[M]. 北京:中国石化出版社, 2011.
[13] BRENNEN C E . Fundamentals of Multiphase Flow[M]. Cambridge University Press, 2005.