面向声学吸收材料的耐压、轻薄和多模式共振吸收等目标,设计不同尺寸口径的圆锥体阵列,通过软件建模、切片,采用热塑性TPU弹性体材料,通过3D打印机将声学阵列结构打印在一个圆饼体内,得到具有一定抗压支撑能力的声学材料的基本框架结构。在该框架结构的空腔内壁上,采用刷涂法施加涂层前体,通过光固化后形成有互穿网络结构的材料涂层,从而得到声学超材料。经测量具有700 Hz的低频吸收峰,并在中频区具有更高更宽的声学吸收,在4500 Hz处的吸收系数可达到0.99,还发现声学吸收随压强增加逐渐向高频移动。
In pursuit of novel acoustic metamaterials with better performances of pressure resistance, lightness and multi-mode resonance absorption, different sizes of horn arrays are designed through software modeling, slicing and printed using thermoplastic TPU elastomer material and a basic frame structure of acoustic material with certain compressive support capacity is obtained. Followed by coating with the precursor and photocuring, the acoustic metamaterial with IPN is obtained and found to have a low frequency absorption peak of 700 Hz and a wider acoustic absorption in the middle frequency region with the absorption coefficient as high as 0.99 at 4500 Hz. And furthermore, the acoustic absorption moves to high frequency with the increase of pressure.
2022,44(17): 56-59 收稿日期:2021-05-14
DOI:10.3404/j.issn.1672-7649.2022.17.011
分类号:TB535
作者简介:刘允航(1977-),男,硕士,工程师,主要从事声学材料研究
参考文献:
[1] ZHU Z, YANG Y, ZHANG N Z, et al. Locally resonant sonic materials[J]. Science, 2000, 289: 1734–1736
[2] YONG X, WEN J, WEN X. Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators[J]. Journal of Physics D Applied Physics, 2012, 45(19): 401–412
[3] JIANG H, WANG Y. Phononic glass: A robust acoustic-absorption material[J]. Journal of the Acoustical Society of America, 2012, 132(2): 694–699
[4] MA G, YANG M, XIAO S, et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials, 2014, 13(9): 873–878
[5] BABA EE S, VIARD N, WANG P, et al. Harnessing deformation to switch on and off the propagation of sound[J]. Advanced Materials, 2016, 28(8): 1631–1635
[6] SHU Z, XIA C, FA Ng N. Broadband acoustic cloak for ultrasound waves[J]. Physical Review Letters, 2011, 106(2): 024301
[7] CHENG Y, ZHOU C, YUAN B G, et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances[J]. Nature Materials, 2015, 14(10): 1013–1019
[8] 孟庆华, 汪国庆, 姜宏, 等, 喷墨打印技术在3D快速成型制造中的应用[J]. 信息记录材料, 2013, 14(5): 41−51.
MENG Qinghua, WANG Guoqing, JIANG Hong, et al. The application of ink-jet method on 3D manufacturing[J]. Information Recording Materials, 2013, 14(5): 41−51.
[9] LIU F, XIE S, WANG Y, et al. Preparation of the polymerizable titania oriented to 3D printing and the laser-induced crystallization[J]. Rapid Prototyping Journal, 2018, 24(9): 1421–1427
[10] XU Y, MENG Q, JIN X, et al. Biodegradable scaffolds for urethra tissue engineering based on 3D printing[J], ACS Appllied Bio Materials, 2020, 3: 2007−2016.
[11] JIANG Q, XU Y, CHEN M, et al. Modification of the wood-plastic composite for enhancement of formaldehyde clearance and the 3D printing application[J]. Journal of Applied Polymer Science, 2021, 138
[12] GAUNAURD, G C. Theory of resonant scattering from spherical cavities in elastic and viscoelastic media[J]. Journal of the Acoustical Society of America, 1978, 63(6): 1699–1712
[13] 江旻, 王桂波, 张若军, 等. 基于充水金属球壳的吸声覆盖层声学特性研究[J]. 舰船科学技术, 2019, 41(4): 11−18.
JIANG Min, WANG Gui-bo, ZHANG Ruo-jun, et al. Acoustic characteristics of the anechoic coating containing water-filled metal spherical shells. Ship Science and Technology, 2019, 41(4): 11−18.