为预报水下无人航行器的操纵性能,基于水下航行力学基本原理,建立六自由度空间运动数学模型,并搭建操纵运动仿真平台。采用变步长四阶-五阶Runge-Kutta算法,对水下无人航行器水平面和垂直面的操纵运动进行仿真预报。实验表明,该方法的仿真结果能够真实反映研究对象的操纵运动特性,可为水下无人航行器水动力布局和控制系统的设计提供一定的技术指导与理论支撑。
To predict the maneuverability of underwater unmanned vehicle, based on the basic principles of underwater navigation mechanics, the mathematical model of six-degree-of-freedom underwater unmanned vehicle motion in space was established, and built a simulation platform for manipulating motion, by using the variable step-size fourth-fifth-order Runge-Kutta method, the manipulation motion of an underwater unmanned vehicle in horizontal and vertical plane were simulated and predicted. The simulation results show that the proposed method can reflect the manipulation motion characteristics of the object, and the results can provide certain technical guidance and theoretical support for the design of the hydrodynamic layout and control system of the underwater unmanned vehicle.
2022,44(17): 72-76 收稿日期:2021-12-23
DOI:10.3404/j.issn.1672-7649.2022.17.015
分类号:TP391.9
基金项目:自然资源部海底科学重点实验室开放基金资助(KLSG2003)
作者简介:常开应(1971-),男,高级工程师,研究方向为UUV动力推进及计算机仿真技术
参考文献:
[1] 钟宏伟. 国外无人水下航行器装备与技术现状展望[J]. 水下无人系统学报, 2017, 25(3): 215–225
ZHONG H W. Review and prospect of equipment and techniques for unmanned undersea vehicle in foreign countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 215–225
[2] 王童豪, 彭星光, 潘光, 等. 无人水下航行器的发展现状与关键技术[J]. 宇航总体技术, 2017, 4(1): 52–64
WANG T H, PENG X G, PAN G, et al. Development and key technologies of unmanned underwater vehicles[J]. Astronautical Systems Engineering Technology, 2017, 4(1): 52–64. (in Chinese)
[3] 高婷. 基于空间拘束运动模拟的AUV动力学建模与操纵性优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[4] 王波, 苏玉民, 秦再白. 微小型水下机器人操纵性能与运动仿真[J]. 系统仿真学报, 2009, 21(13): 4149–4158
WANG B, SUN Y M, QIN Z B. Research on maneuverability and simulation of small autonomous underwater vehicle[J]. Journal of System Simulation, 2009, 21(13): 4149–4158
[5] 赵金鑫. 某潜器水动力性能计算及运动仿真[D]. 哈尔滨: 哈尔滨工程大学, 2011.
[6] 段斐, 庞硕. 基于修正的REMUS水下机器人模型的运动仿真[J]. 应用科技, 2012, 39(4): 83–88
DUAN F, PANG S. Motion simulation based on the modified remus model[J]. Applied Science and Technology, 2012, 39(4): 83–88
[7] 戴君锐, 向先波, 于曹阳, 等. 六自由度水下航行器操纵性仿真及性能评估[J]. 华中科技大学学报(自然科学版), 2015, 43(I): 452−456.
DAI R J, XIANG J B, YU C Y et al. Maneuverability simulation and performance evaluation of six degrees of freedom underwater vehicle[J]. Huazhong University of Science and Technology (Natural and Edition)43(I): 452−456.
[8] 徐得志, 任晋宇. 水下航行器垂向操纵性运动数学仿真研究[J]. 中国水运, 2015, 15(12): 87–89
XUN D Z, REN J Y. Mathematical simulation of vertical maneuverability motion of underwater vehicle[J]. China Water Transport, 2015, 15(12): 87–89
[9] 聂为彪, 钱治强, 吴铭, 等. 水下航行器横向操纵运动预报设计与仿真[J]. 舰船科学技术, 2021, 43(1): 22–26
NIE W B, QIAN Z Q, WU M, et al. Design and simulation of horizontal maneuvering motion prediction for the underwater vehicle[J]. Ship Science and Technology, 2021, 43(1): 22–26
[10] 李天森. 鱼雷操纵性[M]. 北京: 国防工业出版社, 2007.
[11] 严卫生. 鱼雷航行力学[M] . 西安: 西北工业大学出版社, 2005.
[12] 沈建森, 朱书平, 周徐昌. 基于Matlab/Simulink的水下航行器建模与仿真[J]. 兵工自动化, 2012, 31(2): 24–27
SHEN J S, ZHU S P, ZHOU X C. A method for modeling and simulation of underwater vehicle based on Matlab/Simulink[J]. Ordnance Industry Automation, 2012, 31(2): 24–27
[13] 王茂励, 赵国良. 鱼雷空间运动非线性数学模型的建立与仿真[J]. 系统仿真学报, 2007, 19(20): 4812–4814
WANG M L, ZHAO G L. Nonlinear mathematics modeling and simulation of torpedo move in space[J]. Journal of System Simulation, 2007, 19(20): 4812–4814