基于燃料电池在船舶领域应用存在动态特性差的问题,设计混合动力系统对其加以改善。本文选择不同的系统能源以及蓄电池进行比较,介绍船舶混合动力系统的被动式、主动式以及半主动式拓扑结构,阐述混合动力系统基于规则的控制策略和基于优化智能算法的控制策略,分析混合动力系统控制策略的优缺点以及动力系统的发展趋势,得到基于优化智能算法的控制策略对系统的优化效果更好,有望成为混合动力系统控制策略的主流技术,以及混合动力系统是实现燃料电池在船舶领域进一步发展的重要条件的结论。
Based on the problem of poor dynamic characteristics of fuel cells in marine applications, a hybrid power system was designed to improve it. This paper selects different system energy sources and batteries for comparison, introduces the passive, active and semi-active topologies of hybrid power system in ships, describes the rule-based control strategy and the control strategy based on optimization intelligent algorithm of hybrid power system, analyzes the advantages and disadvantages of the control strategy of hybrid power system and the development trend of power system, and gets that the control strategy based on optimization intelligent algorithm has better effect on the system. It is expected to become the mainstream technology of hybrid power system control strategy, and the hybrid power system is an important condition to realize the further development of fuel cell in marine field.
2022,44(17): 96-100 收稿日期:2021-09-16
DOI:10.3404/j.issn.1672-7649.2022.17.019
分类号:U664
基金项目:国家自然科学基金资助项目(51779025,52001045);辽宁省自然科学基金资助项目(2019-BS-026,2020-HYLH-38)
作者简介:徐菱翌(1997-),女,硕士研究生,研究方向为船舶新能源动力技术
参考文献:
[1] 张爽, 苑海超, 孙德平. IMO第四次温室气体研究报告要点解读[J]. 中国船检, 2020(9): 44–50
[2] MATTHIAS V, BEWERSDORFF I, AULINGER A, et al. The contribution of ship emissions to air pollution in the North Sea regions[J]. Environmental Pollution. 2010, 158(6): 2241–2250.
[3] NIU Z, WU J, WANG Y, et al. Investigating the in-/through-plane effective diffusivities of dry and partially-saturated gas diffusion layers[J]. Journal of the Electrochemical Society. 2018, 165(11): F986–F993.
[4] YIN Y, WU T, HE P, et al. Numerical simulation of two-phase cross flow in microstructure of gas diffusion layer with variable contact angle[J]. International Journal of Hydrogen Energy. 2014, 39(28): 15772–15785.
[5] 温术来. 燃料电池的研究现状及进展[J]. 现代化工, 2019, 39(7): 66–70
[6] 臧壮. 小型内河游艇混合动力系统的设计与研究[D]. 镇江: 江苏科技大学, 2017.
[7] HAJIZADEH A, SHAHIRINIA A H, YU D C. Power control of autonomous hybrid diesel generator/ fuel cell marine power system combined with energy storage[C]// IEEE, 2012.
[8] LAN H, WEN S, HONG Y, et al. Optimal sizing of hybrid PV/diesel/battery in ship power system[J]. Applied Energy. 2015, 158: 26–34.
[9] WEN S, LAN H, HONG Y, et al. Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system[J]. Applied Energy. 2016, 175: 158–167.
[10] HAN J, CHARPENTIER J, TANG T. An energy management system of a fuel cell/battery hybrid boat[J]. Energies. 2014, 7(5): 2799–2820.
[11] ZHU L, HAN J, PENG D, et al. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship[C]// IEEE, 2014.
[12] MUTARRAF M, TERRICHE Y, NIAZI, et al. Control of hybrid diesel/PV/battery/ultra-capacitor systems for future shipboard microgrids[J]. Energies (Basel). 2019, 12(18): 3460.
[13] 张国安. 锂离子电池特性研究[J]. 电子测量技术, 2014, 37(10): 41–45
[14] 张泽辉, 高海波, 管聪, 等. 典型工况下的燃料电池船舶复合储能系统设计[J]. 船舶工程. 2018, 40(8): 100–105.
[15] XIONG R, CHEN H, WANG C, et al. Towards a smarter hybrid energy storage system based on battery and ultracapacitor - A critical review on topology and energy management[J]. Journal of Cleaner Production, 2018, 202(NOV.20): 1228–1240
[16] J, KATAGI T, YAMAMOTO S, et al. Operation control of photovoltaic/diesel hybrid generating system considering fluctuation of solar radiation[J]. Solar Energy Materials and Solar Cells, 2001, 67(1): 535–542.
[17] FEROLDI D, DEGLIUOMINI L N, BASUALDO M. Energy management of a hybrid system based on wind–solar power sources and bioethanol[J]. Chemical Engineering Research and Design. 2013, 91(8): 1440–1455.
[18] 魏岩, 沈爱弟, 高迪驹. 船舶混合动力系统双向DC/DC变换器模糊PID控制[J]. 上海海事大学学报. 2016, 37(2): 72–76.
[19] ABEYWARDANA D B W, HREDZAK B, AGELIDIS V G, et al. Supercapacitor sizing method for energy-controlled filter-based hybrid energy storage systems[J]. IEEE Transactions on Power Electronics. 2017, 32(2): 1626–1637.
[20] 韩北川. 基于模糊控制的混合动力船舶能量管理策略研究[J]. 机电工程技术. 2019, 48(7): 84–87.
[21] SONG Z, HOFMANN H, LI J, et al. Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach[J]. Applied Energy. 2015, 139: 151–162.
[22] BABAEI M, SHI J, ZOHRABI N, et al. Development of a hybrid model for shipboard power systems[C]// IEEE, 2015.
[23] GHENAI C, BETTAYEB M, BRDJANIN B, et al. Hybrid solar PV/PEM fuel cell/diesel generator power system for cruise ship: A case study in Stockholm, Sweden[J]. Case Studies in Thermal Engineering. 2019, 14: 100497.
[24] MOHAMMED O, AMIRAT Y, BENBOUZID M. Economical evaluation and optimal energy management of a stand-alone hybrid energy system handling in genetic algorithm strategies[J]. Electronics. 2018, 7(10): 233.
[25] JAUROLA M, HEDIN A, TIKKANEN S, et al. TOpti: a flexible framework for optimising energy management for various ship machinery topologies[J]. Journal of Marine Science and Technology. 2019, 24(4): 1183–1196.
[26] VAFAMAND N, BOUDJADAR J, KHOOBAN M H. Model predictive energy management in hybrid ferry grids[J]. Energy Reports. 2020, 6: 550–557.
[27] CHEN L, TONG Y, DONG Z. Li-Ion battery performance degradation modeling for the optimal design and energy management of electrified propulsion systems[J]. Energies. 2020, 13(7): 1629.
[28] ZHANG Z, GUAN C, LIU Z. Real-time optimization energy management strategy for fuel cell hybrid ships considering power sources degradation[J]. IEEE Access. 2020, 8: 87046–87059.
[29] 严新平. 新能源在船舶上的应用进展及展望[J]. 船海工程, 2010, 39(6): 111–115+120
[30] ALASWAD A, BAROUTAJI A, ACHOUR H, et al. Developments in fuel cell technologies in the transport sector[J]. International Journal of Hydrogen Energy, 2016, 41(37): 16499–16508
[31] 卜叶. 中国第一艘燃料电池游艇研发成功[J]. 科技传播, 2021, 13(3): 8