非对称液压缸工作时具有占用空间小、出力大、可靠性高等优点,约80%的液压系统均使用非对称液压缸。由于非对称液压缸两侧的有效作用面积不等,两腔进出口流量不相等,导致负载方向发生变化时,作动器会出现速度和压力振荡,严重影响电液作动器的可靠性与稳定性等技术指标。针对流量不对称性问题,从作动器架构和控制策略2个方面,系统、全面综述非对称式电液作动器补偿流量不对称的策略,最后提出非对称电液作动器的发展方向和展望。
Asymmetric hydraulic cylinder has the advantages of small space occupation, high power output and high reliability, about 80% of hydraulic system use asymmetric hydraulic cylinder. As the effective area on both sides of the asymmetric hydraulic cylinder is not equal, the inlet and outlet flow of the two chambers are not equal, resulting in speed and pressure oscillations when the load direction changes, which seriously affects the reliability and stability of the electro-hydraulic actuator and other technical indicators. In view of the flow asymmetry problem, the strategy of asymmetric electrohydraulic actuator to compensate the flow asymmetry is systematically and comprehensively reviewed from two aspects of actuator architecture and control strategy, and the development direction and prospect of asymmetric electrohydraulic actuator is proposed.
2022,44(17): 106-113 收稿日期:2021-08-05
DOI:10.3404/j.issn.1672-7649.2022.17.021
分类号:TH137.51
作者简介:郑敬坤(1997-),男,硕士研究生,研究方向为振动噪声控制
参考文献:
[1] 权龙. 泵控缸电液技术研究现状、存在问题及创新解决方案[J]. 机械工程学报, 2008, 44(11): 87–92
QUAN. Long. Current state, problems and the innovative solution of electro-hydraulic technology of pump controlled cylinder[J]. Chinese Journal of Mechanical Engineering, 2008, 44(11): 87–92
[2] QUAN Z, QUAN L, ZHANG J. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 336–346.
[3] WILLIIAMSON C, VANTYSYNOVA M. Pump mode prediction for four-quadrant velocity control ofvaluless hydraulic actuators[J]. Proceedings of the Jfps International Symposium on Fluid Power, 2011, 2008(7–2): 323–328
[4] IMAM A, RAFIQ M, JALAYERI E, et al. Design,implementation and evaluation of a pump controlled circuit for single rod actuators[J]. Actuators, 2017, 6(1): 10
[5] ÇALSKAN, H. BALKAN, T. PLATIN. B. E. A Complete Analysis for Pump Controlled Single Rod Actuators[C]. Proceedings of the 10th International Fluid Power Conference, Dresden, Germany,2016 March : 119–132.
[6] RAHMFELD, IVANTYSYNOVA M. Energy saving hydraulic actuators for mobile machines[C]. In Proceedings of the 1st Bratislavian Fluid Power Symposium, Casta Pila, Slovakia, 1998 June :47–57.
[7] PARKER HANNI N. Compact EHA—electro-hydraulic actuators for high power density applications, 2011. URL:http://www.parker.com/Literature/Hydraulic%20Pump%20Division/Oildyne%20EHA/Compact-EHA-Catalog-HY223101E-7-13.pdf
[8] IMAM A, RAFIQ M, JALAYERI E ,et al. A pump-controlled circuit for singleRod cylinders that incorporates limited throttling compensating valves[J]. Actuators 2018, 7: 13.
[9] COSTA G K ,SEPEHRI N. A critical analysis of valve-compensated hydrostatic actuators: qualitative investigation[J]. Actuators 2019, 8: 59.
[10] WANG L, BOOK W J, HUGGINS J D. A Hydraulic Circuit for Single Rod Cylinders[J]. Journal of dynamic systems, Measurement and Control, 2012 , 134(1): 11−19.
[11] WANG L, BOOK W J.Using leakage to stabilize a hydraulic circuit for pump controlled actuators[J] Journal of Dynamic Systems, Measurement, and Control, 2013, 135(6): 61007.
[12] JALAYERI E, IMAM A, SEPERHI N. Throttle-less single rod hydraulic cylinder positioning system for switching loads[J].Case Studies in Mechanical Systems and Signal Processing,2015, 1: 1–5.
[13] JALAYERI E, IMAM, et al. A Throttle-less single-rod hydraulic cylinder positioning system: design and experimental evaluation[J] Advances in Mechanical Engineering,2015, 7(5):1–14.
[14] ALTARE A. VACA,Design solution for efficient and compact electro-hydraulic actuators, " in Proceedings od Dynamics and Vibroacoustics of Machines (DVM2014), Samara, Russia, 2014.
[15] ALTARE G,VACCA A, RICHTER C,A novel pump design for an efficient and compact electro-hydraulic actuator[C].in Proceedings of IEEE Aerospace Conference, Montana, USA, 2014.
[16] IMAM A , RAFIQ M , JALAYERI E , et al. A pump-controlled circuit for single-rod cylinders that incorporates limited throttling compensating valves[J]. Actuators, 2018, 7(2).
[17] IMAM A, AHMED, RAFIQ, et al. Improving the performance of pump-controlled circuits for single-Rod actuators[J]. Actuators, 2019.
[18] Wetzel Dr. E, Tergau.Hydraulische Anlage Patent No: DE 1, 601, 732 A1, 1970.
[19] LODEWYKS J. Differential cylinder in a closed hydrostatic transmission[D].RWTH Aachen, Germany, 1994.
[20] QUAN L, NEUBERT T, HELDUSER S. Principle to closed loop control differential cylinder with double speed. variable pumps and single loop control signal[J].Chinese Journal of Mechanic Engineering, 2004, 17: 85–88.
[21] KILIC, E. DOLEN CALISKAN M, H, et al. Pressure prediction on a variable-speed pump controlled hydraulic system using structured recurrent neural networks[J]. Control Engineering. Proctice, 2014, 26: 51–71.
[22] 姚静, 王佩, 刘翔宇等. 一种非对称缸液压动力装置[P]. 河北省: CN111120429A, 2020-05-08.
[23] ZHANG S, LI S, MINAV T. Control and Performance Analysis of Variable Speed Pump-Controlled Asymmetric Cylinder Systems under Four-Quadrant Operation[J]. Actuators, 2020, 9(4): 123
[24] HUANG Jiahai, et al. Development of an asymmetric axial piston pump for displacement-controlled system[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 228(8): 1418–1430
[25] HUANG Jiahai, et al. Development of a dual-acting axial piston pump for displacement-controlled system[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2013.
[26] 马艳斌, 赵斌, 郝云晓. 非对称泵控单出杆液压缸系统特性分析[J]. 液压与气动, 2020(8): 167–175
[27] 程冬宏, 高有山, 弓旭峰, 等. 基于流量匹配的泵控挖掘机动臂能耗特性分析[J]. 机床与液压, 2019, 47(21): 155–159
[28] 张晓刚, 权龙, 杨阳, 等. 并联型三配流窗口轴向柱塞泵特性理论分析及试验研究[J]. 机械工程学报, 2011, 47(14): 151–157
[29] 葛磊, 张晓刚, 权龙, 等. 变转速非对称泵直驱液压挖掘机斗杆试验研究[J]. 机械工程学报, 2017, 53(16): 210–216
[30] 赵斌, 郝云晓, 权龙, 等. 闭式泵控单出杆液压缸静动态流量实时匹配系统[P]. 山西省: CN107882786B, 2020-01-07.
[31] 尚耀星, 孙华旺, 吴帅, 等. 非对称泵控非对称液压缸的电动静液作动器[P]. 北京市: CN108506251B, 2020-03-24.
[32] 蒋志昌. 液压参数对称的单活塞杆伺服液压缸[J]. 液压与气动, 2008(8): 75–76
[33] 于安才, 李阳, 王超光, 等. 直驱式单出杆对称液压促动器电液伺服系统研究[J]. 液压与气动, 2017(2): 27–32
[34] WANG L, BOOK W J, HUGGINS J D. Application of singular perturbation theory to hydraulic pump controlled systems[J]. Mechatronics, IEEE/ASME Transactions on, 2012, 17(2): 251–259
[35] KILIC E, DOLEN M, CALISKAN H, et al. Pressure prediction on a ariable-speed pump controlled hydraulic system using structured recurrent neural networks[J]. Control Engineering Practice, 2014, 26(7): 51–71
[36] 熊志林, 陶建峰, 张峰榕, 等. 采用状态估计的泵控非对称液压缸模型预测控制[J]. 西安交通大学学报, 2017, 51(4): 109–115
[37] ZHENG J M, MENG-JIE H E, LIU E D, et al. Adaptive fuzzy pid control for servo motor direct-drive pump control system[J]. Journal of Digital Information Management, 2014, 12(1): 1–7
[38] YU L K, ZHENG J M, YUAN Q L, et al. Fuzzy PID control for direct drive electro-hydraulic position servo system [C]//Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on. IEEE, 2011: 370–373.
[39] 韩江, 黄迪淼, 夏链, 等. 基于模糊PID控制的新型伺服液压机位置控制系统研究[J]. 液压与气动, 2012(2): 87–90
[40] 吕丽丽. 非对称电动静液压系统的神经网络控制算法研究[D]. 济南: 山东科技大学, 2013.