喷水推进器以其优良的机动性、抗空化能力和低噪声等优点,在中、高速船艇上有着广泛应用。从弯道出流均匀度、流动分离情况、压力分布情况以及功率转化率等4个方面,对比无轴和有轴2种喷水推进器的进水流道水动力学性能。通过建立整个流场的三维模型,并借助CFD软件进行水动力学对比分析。结果显示,在外形尺寸和运行工况相同条件下,无轴喷水推进器的叶轮转矩较有轴喷水推进器小6.9%,而喷嘴出口流量前者比后者高出15.93%,表明无轴喷水推进器流动损失更小、效率更高。进一步改变无轴喷水推进器不同纵倾角进行对比,发现随着纵倾角的增加,喷口流量水平分量先增加后减小,在纵倾角为20°时达到峰值。
With its excellent maneuverability, anti-cavitation ability and low noise, water jets are widely used in various mid-high-speed ships. Compare the flow channel inlets of the shaftless and shafted waterjets from four aspects: uniformity of out-flow of the curve, flow separation, pressure distribution, and power conversion rate. By establishing three-dimensional model of the entire flow field and comparing hydrodynamics with the help of CFD software, the results show that Under the same dimensions and operating conditions, the impeller torque of shaftless waterjet is 6.9% less than that of shaft waterjet, but the former nozzle outlet flow is 15.93% higher than the latter, indicating that shaftless waterjet thruster has less flow loss and higher efficiency. By further changing different pitch angles of the shaftless waterjets for comparison, it was found that as the pitch angle increased, the horizontal component of the nozzle flow increased first and then decreased, reaching a peak when the pitch angle was 20 degrees.
2022,44(18): 20-25 收稿日期:2021-09-02
DOI:10.3404/j.issn.1672-7649.2022.18.005
分类号:U662.2
基金项目:青岛黄海学院科技计划项目(2018kj14);青岛黄海学院博士科研启动基金项目(2020boshi03);舰船前沿推进技术创新团队项目
作者简介:杜友威(1984-),男,硕士,副教授,研究方向为高性能船舶阻力和推进、海洋工程装备智能制造技术与工艺。
参考文献:
[1] VERBEEK R. Recent development in waterjet design[C]//Proceedings of the International Conference on Water-jet Propulsion-II: Amsterdam, 1998.
[2] TERVISGA V. The effect of waterjet-hull interaction on thrust and propulsion efficiency[C]//Proceedings of International Conference on Fast Sea Transportation Conference. Trondheim, Norway, 1991.
[3] 钱浩, 宋科委, 郭春雨, 等. 喷水推进器流道对船舶阻力性能的影响[J]. 中国舰船研究, 2017, 12(02): 22–29
QIAN Hao, SONG Ke-wei, GUO Chun-yu, et al. Influence of waterjet duct on ship's resistance performance[J]. Chinese Journal of Ship Research, 2017, 12(02): 22–29
[4] 许慧丽, 邹早建. 喷水推进器进流方向对流道内流场的影响数值研究[J]. 水动力学研究与进展(A辑), 2018, 33(2): 181–187
XU H L, ZOU Z J. Numerical study on the effects of inflow directions on the flow field in a waterjet duct[J]. Journal of Hydrodynamics (A), 2018, 33(2): 181–187
[5] 李臣, 束晓华, 赵春生. 基于流道倾角对喷水推进泵流道性能的影响研究[J]. 舰船科学技术, 2017, 39(17): 49–53
LI C, SHU X H, ZHAO C S. Research on the influence of waterjet duct performance based on inclination of waterjet duct[J]. Ship Science and Technology, 2017, 39(17): 49–53
[6] 常书平, 王永生, 庞之洋, 等. 喷水推进器进水流道内流场数值模拟与分析[J]. 武汉理工大学学报(交通科学与工程版), 2010, 34(1): 47–51
CHANG S P, WANG Y S, PANG Z Y, et al. Numerical simulation and analysis of fluid flowin inlet of waterjet propulsion[J]. Journal of Wuhan University of Technology(Transportation-Science&Engineering), 2010, 34(1): 47–51
[7] HUANG R F, DAI Y X, LUO X W, et al. Multi-objective optimization of the flush-type intake duct for a waterjet propulsion system[J]. Ocean Engineering, 2019, 187(2019): 106172
[8] GONG J , GUO C Y , WANG C , et al. Analysis of waterjet-hull interaction and its impact on the propulsion performance of a four-waterjet-propelled ship[J]. Ocean Engineering, 2019, 180(5): 211-222.
[9] 彭云龙, 王永生, 刘承江, 等. 前置与后置定子泵喷推进器的水动力性能对比[J]. 哈尔滨工程大学学报, 2019, 40(1): 136–144
PENG Y L, WANG Y S, LIU C J, et al. Comparative analysis of the hydrodynamic performance offront-stator and rear-stator pump-jets[J]. Journal of Harbin Engineering University, 2019, 40(1): 136–144
[10] 易文彬, 王永生, 彭云龙, 等. 喷泵叶轮旋转方向对喷水推进性能的影响[J]. 上海交通大学学报, 2016, 50(8): 1207-1213.
YI W B, WANG Y S, PENG Y L, et al. Effects of rotor rotation direction on waterjet propulsion performances[J], Journal of Shanghai Jiaotong University, 2016, 50(8): 1207-1213.
[11] 曹玉良, 王永生, 易文彬, 等. 喷速比对浸没式喷水推进器推进性能的影响[J]. 哈尔滨工程大学学报, 2015, 36(7): 894–898
CAO Y L, WANG Y S, YI W B, et al. Effects of the jet velocity ratioon the propulsion performance of a submerged waterjet[J]. Journal of Harbin Engineering University, 2015, 36(7): 894–898
[12] 王雪豹, 潘中永, 朱嘉炜. 对旋轴流式喷水推进器内部流动数值模拟与分析[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 605–611
WANG X B, PAN Z Y, ZHU J W. Numerical research on internal flow characteristics ofcontra-rotating water-jet propellers[J]. Journal of Jiangsu University of Science and Technology ( Natural Science Edition), 2017, 31(5): 605–611
[13] 刘瑞华, 曹璞钰, 王洋, 等. 无轴式喷水推进泵的水动力特性[J]. 排灌机械工程学报, 2015, 33(5): 380–386
LIU R H, CAO P Y, WANG Y, et al. Hydrodynamic characteristics of shaft-less waterjet pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(5): 380–386
[14] 张明宇, 林瑞霖, 王永生, 等. 潜艇无轴泵喷推进器水下辐射噪声数值预报及分析[J]. 船舶力学, 2018, 22(11): 11–20
ZHANG M Y, LIN R L, WANG Y S, et al. Numerical prediction and analysis of underwater radiated noise of no-shaft pumpjet[J]. Journal of Ship Mechanics, 2018, 22(11): 11–20
[15] 王永生, 刘承江, 苏永生, 等, 舰船新型推进系统[M]. 北京: 国防工业出版社, 2014, 83-102.
[16] BULTEN. Numerical analysis of waterjet propulsion system[D]. Eindhoven: Department of Mechanical Engineering, Technical University of Eindhoven, 2006.