为了拓宽动力吸振器的工作带宽,提高吸振器对大型设备的适用性,利用气囊承载范围宽、刚度可调节及大载荷特性,提出一种气囊式可调频动力吸振器。该吸振器通过调节气囊压力改变刚度来改变其固有频率,并且能够通过调节其节流孔大小来改善其阻尼特性,较好地拓宽吸振带宽,提高吸振效果。建立“气囊-节流孔-气囊”复刚度理论模型,并利用数值仿真探究不同节流孔开口面积、气囊气压对复刚度的影响。对该吸振器的吸振范围、吸振效果进行数值仿真计算,结果表明该吸振器对大型设备吸振效果显著,吸振范围可达7.6~46.1 Hz,最高可将主系统振动降低至原来的28%。
To expand the working bandwidth and improve the applicability of the dynamic vibration absorber to large equipment, a kind of frequency adjustable air-spring dynamic vibration absorber is proposed based on the air spring characteristics of wide loading range, adjustable stiffness and heavy loading capacity. The natural frequency of the vibration absorber can be tuned by adjusting the pressure of the air spring to change the stiffness, and the damping characteristics of the vibration absorber can be improved by adjusting the size of the orifice, which can not only broaden the range of vibration absorption but improve the vibration absorption efficiency. The complex stiffness theoretical model of “air spring-orifice-air spring” is established, and the effect on the complex stiffness with different orifice opening area and air spring pressure are investigated through numerical simulation. Then the range and effect of the vibration absorber are simulated. The results show that the absorber has a significant effect on the vibration absorption of large equipment, with a vibration absorption range of 7.6 ~ 46.1 Hz and a maximum reduction of 28% of the original vibration of the main system.
2022,44(18): 31-35 收稿日期:2021-06-29
DOI:10.3404/j.issn.1672-7649.2022.18.007
分类号:TB535
基金项目:军内科研项目(HJ20191C040616)
作者简介:李创(1997-),男,硕士研究生,研究方向为振动与噪声控制
参考文献:
[1] 徐鉴. 振动控制研究进展综述[J]. 力学季刊, 2015, 36(4): 547–565
XU Jian. Advances of research on vibration control[J]. Chinses Quarterly of Mechanics, 2015, 36(4): 547–565
[2] WALSH P L, LAMANCUSA J S. A variable stiffness vibration absorber for minimization of transient vibrations[J]. Academic Press, 1992, 158(2).
[3] FRANCHEK M A, RYAN M W, BERNHARD R J. Adaptive passive vibration control[J]. Journal of Sound and Vibration, 1996, 189(5).
[4] K NAGAYA, A KURUSU, S IKAI. et al. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control[J]. Journal of Sound and Vibration, 1999, 228(4).
[5] 徐振邦, 龚兴龙, 陈现敏, 等. 机械自调谐式动力吸振器的研究[J]. 中国机械工程, 2009, 20(9): 1057–1062
[6] 徐振邦, 龚兴龙, 陈现敏. 机械式频率可调动力吸振器及其减振特性[J]. 振动与冲击, 2010, 29(2): 1–6+217
XU Zhen-bang, GONG Xing-long, CHEN Xian-min. Mechanical vibration absorber with tunable resonant[J]. Journal of Vibration and Shock, 2010, 29(2): 1–6+217
[7] 冯肖肖. 电磁式半主动吸振器设计及实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[8] 孙志卓, 王全娟, 王付山. 一种主动电磁式动力吸振器的研究与设计[J]. 振动与冲击, 2006(3): 198–201+218
[9] MOHAMMED K, YANG Zhi-chun, GU Ying-song, et al. Active dynamic vibration absorber for flutter suppression[J]. Journal of Sound and Vibration, 2020.
[10] 刘刚, 郑大胜, 丁志雨, 等. 变质量-负刚度动力吸振器试验研究[J]. 中国机械工程, 2018, 29(5): 538–543
[11] BRENNAN M J. Vibration control using a tunable vibration neutralizer[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1997, 211(2).
[12] 靳晓雄, 肖勇, 蔺玉辉, 等. 空气弹簧半主动式动力吸振器的研究[J]. 中国工程机械学报, 2007(3): 253–257
[13] 背户一登, 任明章. 动力吸振器及其应用[M]. 北京: 机械工业出版社, 2013.
[14] Jeung-Hoon Lee, Kwang-Joon Kim. Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations[J]. Journal of Sound and Vibration, 2006, 301(3).