以提升船用零件3D打印材料缺陷检测水平为目标,设计基于超声技术的船用零件3D打印材料缺陷检测方法。选取PXUT-395数字式超声波探伤仪作为船用零件3D打印材料的超声检测装置,设置超声检测装置的超声波探头型号为Olympus V382-SU,采集船用零件3D打印材料的超声波信号;利用WVD变换方法处理超声检测装置采集的超声波信号,提取3D打印材料超声波信号的时域特征。选取极限学习机作为缺陷检测方法,设置所提取的超声波时域特征作为极限学习机的输入,输出船用零件3D打印材料缺陷检测结果。实验结果表明,该方法有效检测船用零件3D打印材料的裂纹、气泡缺陷,缺陷检测误差在1 mm以内。
Aiming at improving the defect detection level of marine parts 3D printing materials, a defect detection method of marine parts 3D printing materials based on ultrasonic technology was studied. Pxut-395 digital ultrasonic flaw detector was selected as the ultrasonic detection device for 3D printing materials of marine parts, and the ultrasonic probe model of the ultrasonic detection device was set as Olympus V382-SU to collect ultrasonic signals of 3D printing materials of marine parts. The ultrasonic signal collected by ultrasonic detection device was processed by WVD transformation method, and the time-domain characteristics of ultrasonic signal of 3D printing materials were extracted. The extreme learning machine is selected as the defect detection method, and the extracted ultrasonic time domain features are set as the input of the extreme learning machine to output the defect detection results of marine parts 3D printing materials. The experimental results show that the method is effective in detecting cracks and bubbles in 3D printing materials of Marine parts, and the defect detection error is within 1 mm.
2022,44(18): 69-72 收稿日期:2021-06-03
DOI:10.3404/j.issn.1672-7649.2022.18.015
分类号:TB559
基金项目:国家级创新训练项目(202110595070);广西高校中青年教师科研基础能力提升项目(2021KY0225)
作者简介:钟思(1982-),女,硕士,工程师,主要从事计算机应用研究
参考文献:
[1] 张玉燕, 任腾飞, 温银堂, 等. 一种基于YOLOv3算法的3D打印点阵结构缺陷识别方法[J]. 计量学报, 2022, 43(1): 7–13
[2] 马宗方, 杨兴伟, 宋琳, 等. 基于层间信息熵的混凝土3D打印构件精细分割[J]. 激光与光电子学进展, 2022, 59(4): 101–108
[3] 温银堂, 高亭亭, 张玉燕, 等. 3D打印复杂点阵结构的缺陷三维可视化方法[J]. 计量学报, 2020, 41(9): 1077–1081
[4] 周海强, 刘天浩, 裴翠祥, 等. 基于电磁超声共振的金属环-含能材料界面脱粘缺陷检测[J]. 含能材料, 2020, 28(10): 1010–1016
[5] 孟翔震, 李再帏, 朱文发, 等. 基于空耦超声Lamb波的金属板状结构内部缺陷检测方法[J]. 应用声学, 2020, 39(2): 316–324
[6] 冯玮, 杨辰龙, 边成亮, 等. 基于递归分析的微裂纹缺陷超声检测技术研究[J]. 振动与冲击, 2020, 39(10): 154–162
[7] 徐志祥, 关守岩, 杨帆, 等. 一种基于2D-CNN的激光超声表面缺陷检测方法[J]. 应用光学, 2021, 42(1): 149–156