本文基于水动力软件OrcaFlex搭建了母船-脐带缆-ROV水动力模型,模拟近海海况下ROV的运行,探究ROV在不同运动模式下脐带缆受到的水动力特性。利用水动力软件AQWA获得母船被动运动下的RAO,采用OrcaFlex软件进行水动力仿真,获得脐带缆受到的有效张力、Strouhal频率和缆绳位移等一系列水动力响应。结果表明, ROV在进行平动或旋转运动时,脐带缆两端牵制力具有周期性;在缆长方向上,各个流向对应张力曲线的波动表现出平缓的特点,且中间张力较小,两端张力较大;将缆绳作为参考点,流体靠近ROV运动和母船的相对流速和Strouhal频率均越大。研究结果可为小型ROV脐带缆水动力分析提供有效的指导。
This paper built a mothership-umbilical cable-ROV hydrodynamic model based on the hydrodynamic software Orcaflex to simulate the operation of the ROV under offshore sea conditions and explore the hydrodynamic characteristics of the umbilical cable under different motion modes. The RAO of the mother ship was obtained by the hydrodynamic software AQWA. Based on the RAO data, Orcaflex software was used to conduct hydrodynamic simulation, and a series of hydrodynamic responses, such as the effective tension, Strouhal frequency and cable displacement, were obtained. The results show that, when the ROV is in translational or rotational motion, the restraining force at both ends of the umbilical cable is periodic; In the cable length direction, the fluctuation of the tension curve corresponding to each flow direction is gentle, and the tension in the middle is small, while the tension at both ends is large; When the cable is used as the reference point, the relative velocity and Strouhal frequency of the fluid near the ROV and the mother ship are larger. The hydrodynamic results can provide effective guidance for the hydrodynamic analysis of the umbilical cable of a small ROV.
2022,44(18): 86-93 收稿日期:2021-06-02
DOI:10.3404/j.issn.1672-7649.2022.18.018
分类号:U661.4
基金项目:国家自然科学基金资助项目(51809126);江苏省自然科学基金资助项目(BK20181468)
作者简介:施兴华(1981-),男,博士,教授,研究方向为船舶与海洋工程结构物水动力性能
参考文献:
[1] 王海龙, 张奇峰, 崔雨晨, 等. 深海遥控无人潜水器脐带缆动态特性及张力抑制方法[J]. 南京理工大学学报, 2021, 45(1): 105–115
[2] 冯现洪, 魏行超, 王文亮. 深水悬链线式脐带缆总体动力响应特性研究[J]. 海洋工程, 2014, 32(3): 22–27
[3] 张大朋, 白勇, 朱克强. 不同模式下拖缆对水下拖体运动姿态的影响研究[J]. 船舶力学, 2018, 22(8): 967–976
[4] 李泯, 孙新蕾, 黄刚. 水下脐带缆水动力性能分析[J]. 中国水运, 2017(11): 44–46
[5] WADI A, LEE J H, MUKHOPADHYAY S . Modeling and system identification of an autonomous underwater vehicle[C]// International Symposium on Mechatronics & Its Applications. IEEE, 2018.
[6] ENG Y H, CHINC S, LAU W S. Added mass computation for control of an open-frame remotely-operated vehicle: application using Wamit and Matlab[J]. Journal of Marine Science and Technology, 2014, 22(4): 405–416
[7] 王劭文, 隋国荣. 海底脐带缆系统软件的设计与分析[J]. 软件工程, 2020, 23(10): 42–45
[8] 吴杰, 王志东, 凌宏杰, 等. 深海作业型带缆水下机器人关键技术综述[J]. 江苏科技大学学报(自然科学版), 2020, 34(4): 1–12
[9] 郑利军, 邓小康, 毛英超, 等. 深水脐带缆构型选型设计[J]. 船舶工程, 2020, 42(S1): 442–444+456
[10] 平伟. 基于万米级ROV脐带缆的超高压光纤衰减性能试验研究[J]. 数字通信世界, 2020(6): 102–103+105
[11] 平伟. 基于ROV脐带缆的高压光纤测试平台设计与实现[J]. 通信电源技术, 2020, 37(4): 111–113
[12] 李博, 葛斐, 郭宏, 等. 基于仿真试验样本特征的脐带缆泄漏检测与定位方法[J]. 中国海上油气, 2019, 31(6): 148–153
[13] 阎军, 胡海涛, 尹原超, 等. 海洋柔性管缆结构的试验测试技术[J]. 海洋工程装备与技术, 2019, 6(6): 750–757
[14] 张克超, 郭海燕, 赵伟, 等. 海洋脐带缆截面力学性能分析与数值模拟[J]. 中国海洋大学学报(自然科学版), 2019, 49(S1): 128–134
[15] 罗凌波, 涂绍平, 朱迎谷. 深海工作级液压ROV系统供电设计研究[J]. 电子世界, 2019(12): 11–13