由于海上波浪的升沉运动造成浮式起重船剧烈摇晃,导致海上风电设备在运输安装时的失准甚至碰撞损坏,为此本文提出基于增量模型切换和反步控制法的船舶主动升沉补偿策略。采用阶跃位置响应的实验建模方法,建立电缸主动升沉补偿系统模型;针对电缸主动升沉补偿系统时延的时变问题,提出补偿控制时的增量模型切换策略,并采用反步控制方法驱动电缸补偿浮式起重船的升沉运动,以此保证风电设备运输安装时的稳定性和精准性。试验结果表明,此策略较单模型补偿控制精度提高了50%,能有效保证风电设备安装时的精准性。
The violent shaking of the floating crane ship is caused by the heave movement of sea waves. And during offshore wind turbine transportation and installation, it can lead to the misalignment and even collision damage. So this paper proposes a ship active heave compensation strategy, based on incremental model switching and backstepping control method. According to the platform of electric cylinder active heave compensation system, the experimental modeling method of step position response is adopted to establish the system model. To solve the time-varying problem of time delay, an incremental model switching strategy for compensation control is proposed. Then the backstepping control method is used to drive the electric cylinder to compensate the heave movement of the floating crane ship. so as to ensure the stability and accuracy of wind power equipment during transportation and installation. In the electric cylinder platform experiments , compared to the single model compensation method, the compensation accuracy of this strategy is improved 50%, which can effectively satisfy the accuracy of wind power equipment installation.
2022,44(18): 111-115 收稿日期:2021-09-12
DOI:10.3404/j.issn.1672-7649.2022.18.022
分类号:P751
基金项目:国家自然科学基金资助项目(NSFC62073213);国家高技术研究发展计划资助项目(2013AA041106)
作者简介:张琴(1982-),女,博士,研究方向为多海域分布式船舶系统的运动预测及补偿控制
参考文献:
[1] 段玉响, 任政儒, 周利. 主动式升沉补偿技术研究现状和发展趋势[J]. 舰船科学技术, 2020, 42(21): 76–82
DUAN Yu-xiang, REN zheng-ru, ZHOU Li. Research status and development trend of active heave compensation technology[J]. Ship Science and Technology, 2020, 42(21): 76–82
[2] NGO Q H, NGUYEN, N P. Payload pendulation and position control systems for an offshore container crane with adaptive-gain sliding mode control[J]. Asian Journal of Control, 2020, 22(5): 2119−2128.
[3] LU Peng, SHENG Jinqin. Design of six degrees of freedom active wave compensation platform[J]. International Core Journal of Engineering, 2020, 6(9).
[4] LI Zhi, MA Xin. ADRC-ESMPC active heave compensation control strategy for offshore cranes[J]. Ships and Offshore Sturctures, 2019, 15(10): 1098−1106.
[5] REN ZR, SKJETNE R. Active heave compensation of floating wind turbine installation using a catamaran construction vessel[J]. Marine Structures, 2021, 75: 1−14.
[6] 振华重工研发国内首个深海下主动波浪补偿起重机[J]. 水运工程, 2015(4): 7.
Zhenhua heavy industry develops the first domestic deep-sea active wave compensation crane [J]. Water Transportation Engineering, 2015 (4): 7.
[7] 夏永胜, 孙国兵, 黎加基. 伺服电缸的动态数学模型研究[J]. 机械工程与自动化, 2016(3): 3–6
XIA Yong-sheng, SUN Guo-bing, LI Jia-ji. Research on dynamic mathematical model of servo cylinder[J]. Mechanical Engineering and Automation, 2016(3): 3–6
[8] 鄢华林, 缪鑫, 王伟, 等. 主动式波浪补偿在位置控制系统中的应用[J]. 制造业自动化, 2016, 38(10): 29−32+38.
YAN Hua-lin, MIAO Xin, WANG Wei, et al. Application of active wave compensation in position control system [J]. Manufacturing Automation, 2016, 38 (10): 29−32 + 38.
[9] 吉鑫浩, 汪成文, 陈帅, 等. 阀控电液位置伺服系统滑模反步控制方法[J]. 中南大学学报(自然科学版), 2020, 51(6): 1518–1525
JI Xin-hao, WANG Cheng-wen, CHEN Shuai, et al. Sliding mode backstepping control method for valve controlled electro-hydraulic position servo system[J]. Journal of Central South University (Natural Science Edition), 2020, 51(6): 1518–1525
[10] 张文跃, 佟来生, 朱跃欧, 等. 磁浮列车悬浮系统的反步控制方法及实验研究[J]. 科学技术与工程, 2021, 21(4): 1563–1567
ZHANG Wen-yue, TONG Lai-sheng, ZHU Yue-ou, et al. Reverse step control method and experimental research of maglev train suspension system[J]. Science Technology and Engineering, 2021, 21(4): 1563–1567